Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Carlos Agis-Balboa is active.

Publication


Featured researches published by Roberto Carlos Agis-Balboa.


Science | 2010

Altered Histone Acetylation Is Associated with Age-Dependent Memory Impairment in Mice

Shahaf Peleg; Farahnaz Sananbenesi; Athanasios Zovoilis; Susanne Burkhardt; Sanaz Bahari-Javan; Roberto Carlos Agis-Balboa; Perla Cota; Jessica Wittnam; Andreas Gogol-Doering; Lennart Opitz; Gabriella Salinas-Riester; Markus Dettenhofer; Hui Kang; Laurent Farinelli; Wei Chen; Andre Fischer

Age-Old Problem With the increase in human life span, there is an associated increase in incidence of age-associated cognitive decline, which causes a huge emotional and economic burden. However, the mechanisms underlying age-associated memory impairment are poorly understood. Now, Peleg et al. (p. 753; see the Perspective by Sweatt) have found that the memory disturbances in the aging mouse brain are associated with specific changes in learning-induced histone acetylation, which interferes with the hippocampal gene-expression program. Restoration of dynamic histone acetylation reinstated cognitive function in the aging mouse. Deregulated histone acetylation may represent an early biomarker of age-dependent cognitive decline. As the human life span increases, the number of people suffering from cognitive decline is rising dramatically. The mechanisms underlying age-associated memory impairment are, however, not understood. Here we show that memory disturbances in the aging brain of the mouse are associated with altered hippocampal chromatin plasticity. During learning, aged mice display a specific deregulation of histone H4 lysine 12 (H4K12) acetylation and fail to initiate a hippocampal gene expression program associated with memory consolidation. Restoration of physiological H4K12 acetylation reinstates the expression of learning-induced genes and leads to the recovery of cognitive abilities. Our data suggest that deregulated H4K12 acetylation may represent an early biomarker of an impaired genome-environment interaction in the aging mouse brain.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis

Roberto Carlos Agis-Balboa; Graziano Pinna; Adrian Zhubi; Ekrem Maloku; Marin Veldic; Erminio Costa; Alessandro Guidotti

Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA action at GABAA receptors. ALLO and THDOC are synthesized in the brain from progesterone or deoxycorticosterone, respectively, by the sequential action of two enzymes: 5α-reductase (5α-R) type I and 3α-hydroxysteroid dehydrogenase (3α-HSD). This study evaluates 5α-R type I and 3α-HSD mRNA expression level in mouse brain by using in situ hybridization combined with glutamic acid decarboxylase 67/65, vesicular glutamate transporter 2, glial fibrillary acidic protein, and S100β immunohistochemistry. We demonstrate that 5α-R type I and 3α-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus. Neither 5α-R type I nor 3α-HSD mRNAs are expressed in S100β- or glial fibrillary acidic protein-positive glial cells. Using glutamic acid decarboxylase 67/65 antibodies to mark GABAergic neurons, we failed to detect 5α-R type I and 3α-HSD in cortical and hippocampal GABAergic interneurons. However, 5α-R type I and 3α-HSD are significantly expressed in principal GABAergic output neurons, such as striatal medium spiny, reticular thalamic nucleus, and cerebellar Purkinje neurons. A similar distribution and cellular location of neurosteroidogenic enzymes was observed in rat brain. Taken together, these data suggest that ALLO and THDOC, which can be synthesized in principal output neurons, modulate GABA action at GABAA receptors, either with an autocrine or a paracrine mechanism or by reaching GABAA receptor intracellular sites through lateral membrane diffusion.


The EMBO Journal | 2011

microRNA-34c is a novel target to treat dementias

Athanasios Zovoilis; Hope Y Agbemenyah; Roberto Carlos Agis-Balboa; Roman Stilling; Dieter Edbauer; Pooja Rao; Laurent Farinelli; Ivana Delalle; Andrea Schmitt; Peter Falkai; Sanaz Bahari-Javan; Susanne Burkhardt; Farahnaz Sananbenesi; Andre Fischer

MicroRNAs are key regulators of transcriptome plasticity and have been implicated with the pathogenesis of brain diseases. Here, we employed massive parallel sequencing and provide, at an unprecedented depth, the complete and quantitative miRNAome of the mouse hippocampus, the prime target of neurodegenerative diseases such as Alzheimers disease (AD). Using integrative genetics, we identify miR‐34c as a negative constraint of memory consolidation and show that miR‐34c levels are elevated in the hippocampus of AD patients and corresponding mouse models. In line with this, targeting miR‐34 seed rescues learning ability in these mouse models. Our data suggest that miR‐34c could be a marker for the onset of cognitive disturbances linked to AD and indicate that targeting miR‐34c could be a suitable therapy.


Schizophrenia Research | 2007

Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder

Marin Veldic; Bashkim Kadriu; Ekrem Maloku; Roberto Carlos Agis-Balboa; Alessandro Guidotti; Davis Jm; Erminio Costa

In the cerebral prefrontal cortex (PFC), DNA-methyltransferase 1 (DNMT1), the enzyme that catalyzes the methylation of cytosine at carbon atoms in position 5 in CpG dinucleotides, is expressed selectively in GABAergic neurons and is upregulated in layers I and II of schizophrenia (SZ) and bipolar disorder patients with psychosis (BDP). To replicate these earlier findings and to verify whether overexpression of DNMT1 and the consequent epigenetic decrease of reelin and glutamic acid decarboxylase (GAD) 67 mRNA expression also occur in GABAergic medium spiny neurons of the caudate nucleus (CN) and putamen (PT) of SZ and BDP, we studied the entire McLean 66 Cohort (Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA) including SZ and BDP, which were matched with nonpsychiatric subjects. The data demonstrate that in GABAergic medium spiny neurons of CN and PT, unlike in GABAergic neurons of layer I and II PFC, the increased expression of DNMT1 and the decrease of reelin and GAD67 occur in SZ but not in BDP. This suggests that different epigenetic mechanisms must exist in the pathogenesis underlying SZ and BDP and implies that these disorders might involve two separate entities that are characterized by a well-defined neuropathology.


Journal of Alzheimer's Disease | 2011

Sodium Butyrate Improves Memory Function in an Alzheimer's Disease Mouse Model When Administered at an Advanced Stage of Disease Progression

Nambirajan Govindarajan; Roberto Carlos Agis-Balboa; Jonas Walter; Farahnaz Sananbenesi; Andre Fischer

Dysregulation of histone acetylation has been implicated in the onset of age-associated memory impairment and the pathogenesis of neurodegenerative diseases. Elevation of histone acetylation via administration of histone deacetylase (HDAC) inhibitors is currently being pursued as a novel therapeutic avenue to treat memory impairment linked to Alzheimers disease (AD). Here we show that severe amyloid pathology correlates with a pronounced dysregulation of histone acetylation in the forebrain of APPPS1-21 mice. Importantly, prolonged treatment with the pan-HDAC inhibitor sodium butyrate improved associative memory in APPPS1-21 mice even when administered at a very advanced stage of pathology. The recovery of memory function correlated with elevated hippocampal histone acetylation and increased expression of genes implicated in associative learning. These data advance our understanding of the potential applicability of HDAC inhibitors for the treatment of AD and suggest that HDAC inhibitors may have beneficial effects even when administered long after the onset of disease-associated symptoms.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice

Roberto Carlos Agis-Balboa; Graziano Pinna; Fabio Pibiri; Bashkim Kadriu; Erminio Costa; Alessandro Guidotti

Allopregnanolone (ALLO), synthesized by pyramidal neurons, is a potent positive allosteric modulator of the action of GABA at GABAA receptors expressing specific neurosteroid binding sites. In the brain, ALLO is synthesized from progesterone by the sequential action of two enzymes: 5α-reductase type I (5α-RI) and 3α-hydroxysteroid dehydrogenase (3α-HSD). In the cortex, hippocampus, and amygdala, these enzymes are colocalized in principal glutamatergic output neurons [Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Proc Natl Acad Sci USA 103:14602–14607], but they are not detectable in GABAergic interneurons. Using RT-PCR and in situ hybridization, this study compares 5α-RI and 3α-HSD mRNA brain expression levels in group housed and in socially isolated male mice for 4 weeks. In these socially isolated mice, the mRNA expression of 5α-RI was dramatically decreased in hippocampal CA3 glutamatergic pyramidal neurons, dentate gyrus granule cells, glutamatergic neurons of the basolateral amygdala, and glutamatergic pyramidal neurons of layer V/VI frontal (prelimbic, infralimbic) cortex (FC). In contrast, 5α-RI mRNA expression failed to change in CA1 pyramidal neurons, central amygdala neurons, pyramidal neurons of layer II/III FC, ventromedial thalamic nucleus neurons, and striatal medium spiny and reticular thalamic nucleus neurons. Importantly, 3α-HSD mRNA expression was unchanged by protracted social isolation (Si). These data suggest that, in male mice, after 4 weeks of Si, the expression of 5α-RI mRNA, which is the rate-limiting-step enzyme of ALLO biosynthesis, is specifically down-regulated in glutamatergic pyramidal neurons that converge on the amygdala from cortical and hippocampal regions. In socially isolated mice, this down-regulation may account for the appearance of behavioral disorders such as anxiety, aggression, and cognitive dysfunction.


The EMBO Journal | 2011

A hippocampal insulin‐growth factor 2 pathway regulates the extinction of fear memories

Roberto Carlos Agis-Balboa; Dario Arcos-Diaz; Jessica Wittnam; Nambirajan Govindarajan; Kim Blom; Susanne Burkhardt; Ulla Haladyniak; Hope Y Agbemenyah; Athanasios Zovoilis; Gabriella Salinas-Riester; Lennart Opitz; Farahnaz Sananbenesi; Andre Fischer

Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin‐growth factor 2 (Igf2) and downregulation of insulin‐growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2‐dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinction‐induced IGF2/IGFBP7 signalling promotes the survival of 17–19‐day‐old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory.


Neurochemical Research | 2008

Neurosteroid Biosynthesis Regulates Sexually Dimorphic Fear and Aggressive Behavior in Mice

Graziano Pinna; Roberto Carlos Agis-Balboa; Fabio Pibiri; Marianela Nelson; Alessandro Guidotti; Erminio Costa

The neurosteroid allopregnanolone is a potent positive allosteric modulator of GABA action at GABAA receptors. Allopregnanolone is synthesized in the brain from progesterone by the sequential action of 5α-reductase type I (5α-RI) and 3α-hydroxysteroid dehydrogenase (3α-HSD). 5α-RI and 3α-HSD are co-expressed in cortical, hippocampal, and olfactory bulb glutamatergic neurons and in output neurons of the amygdala, thalamus, cerebellum, and striatum. Neither 5α-RI nor 3α-HSD mRNAs is expressed in glial cells or in cortical or hippocampal GABAergic interneurons. It is likely that allopregnanolone synthesized in principal output neurons locally modulates GABAA receptor function by reaching GABAA receptor intracellular sites through lateral membrane diffusion. This review will focus on the behavioral effects of allopregnanolone on mouse models that are related to a sexually dimorphic regulation of brain allopregnanolone biosynthesis. Animal models of psychiatric disorders, including socially isolated male mice or mice that receive a long-term treatment with anabolic androgenic steroids (AAS), show abnormal behaviors such as altered fear responses and aggression. In these animal models, the cortico-limbic mRNA expression of 5α-RI is regulated in a sexually dimorphic manner. Hence, in selected glutamatergic pyramidal neurons of the cortex, CA3, and basolateral amygdala and in granular cells of the dentate gyrus, mRNA expression of 5α-RI is decreased, which results in a downregulation of allopregnanolone content. In contrast, 5α-RI mRNA expression fails to change in the striatum medium spiny neurons and in the reticular thalamic nucleus neurons, which are GABAergic.By manipulating allopregnanolone levels in glutamatergic cortico-limbic neurons in opposite directions to improve [using the potent selective brain steroidogenic stimulant (SBSS) S-norfluoxetine] or induce (using the potent 5α-RI inhibitor SKF 105,111) behavioral deficits, respectively, we have established the fundamental role of cortico-limbic allopregnanolone levels in the sexually dimorphic regulation of aggression and fear. By selectively targeting allopregnanolone downregulation in glutamatergic cortico-limbic neurons, i.e., by improving the response of GABAA receptors to GABA, new therapeutics would offer appropriate and safe management of psychiatric conditions, including impulsive aggression, irritability, irrational fear, anxiety, posttraumatic stress disorders, and depression.


The Journal of Neuroscience | 2013

Histone-Methyltransferase MLL2 (KMT2B) Is Required for Memory Formation in Mice

Cemil Kerimoglu; Roberto Carlos Agis-Balboa; Andrea Kranz; Roman Stilling; Sanaz Bahari-Javan; Eva Benito-Garagorri; Rashi Halder; Susanne Burkhardt; Adrian Francis Stewart; Andre Fischer

The consolidation of long-term memories requires differential gene expression. Recent research has suggested that dynamic changes in chromatin structure play a role in regulating the gene expression program linked to memory formation. The contribution of histone methylation, an important regulatory mechanism of chromatin plasticity that is mediated by the counteracting activity of histone-methyltransferases and histone-demethylases, is, however, not well understood. Here we show that mice lacking the histone-methyltransferase myeloid/lymphoid or mixed-lineage leukemia 2 (mll2/kmt2b) gene in adult forebrain excitatory neurons display impaired hippocampus-dependent memory function. Consistent with the role of KMT2B in gene-activation DNA microarray analysis revealed that 152 genes were downregulated in the hippocampal dentate gyrus region of mice lacking kmt2b. Downregulated plasticity genes showed a specific deficit in histone 3 lysine 4 di- and trimethylation, while histone 3 lysine 4 monomethylation was not affected. Our data demonstrates that KMT2B mediates hippocampal histone 3 lysine 4 di- and trimethylation and is a critical player for memory formation.


Journal of Alzheimer's Disease | 2012

Loss of HDAC5 Impairs Memory Function: Implications for Alzheimer's Disease

Roberto Carlos Agis-Balboa; Zsuzsa Pavelka; Cemil Kerimoglu; Andre Fischer

Epigenetic mechanisms such as histone-acetylation have been implicated with learning and memory and are believed to contribute to the pathogenesis of neurodegenerative diseases such as Alzheimers disease (AD). Histone-deacetylase (HDAC) inhibitors were shown to exhibit neuroprotective and neurodegenerative properties in AD animal models, and targeting HDACs appears to be a promising therapeutic strategy for brain diseases. The role of the distinct HDAC proteins in the adult brain is, however, not well understood and so far only pan-HDAC inhibitors have been tested in preclinical settings. Understanding the role of individual HDACs in cognition and AD pathogenesis is therefore vital to develop more selective HDAC inhibitors for the treatment of AD. In this study we investigated the role of HDAC5 in memory function and AD pathogenesis. We show that loss of HDAC5 impairs memory function but has little impact on pathogenesis in a mouse model for amyloid pathology. Our data reveals a novel role of HDAC5 in memory consolidation and shows that future approaches to develop more selective HDAC inhibitors for the treatment of AD should avoid targeting HDAC5.

Collaboration


Dive into the Roberto Carlos Agis-Balboa's collaboration.

Top Co-Authors

Avatar

Andre Fischer

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Graziano Pinna

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Alessandro Guidotti

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Erminio Costa

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Susanne Burkhardt

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Manuel Olivares

University Hospital Complex Of Vigo

View shared research outputs
Top Co-Authors

Avatar

Tania Rivera-Baltanas

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cemil Kerimoglu

German Center for Neurodegenerative Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge