Roberto Coccurello
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Coccurello.
Psychoneuroendocrinology | 2006
Anna Moles; Alessandro Bartolomucci; L. Garbugino; Roberto Conti; Antonio Caprioli; Roberto Coccurello; Roberto Rizzi; B. Ciani; F. R. D'Amato
Stress has been associated with changes in eating behaviour and food preferences. Moreover, psychosocial and socio-economical challenges have been related with neuroendocrine-autonomic dysregulation followed by visceral obesity and associated risk factors for disease. In the current study, we provide a model of body weight development, food intake, energy expenditure of subordinate and dominant mice under psychosocial stress either in the presence of a standard diet or of a high palatable diet. When only standard chow was available stressed animals consumed more food in comparison to the control counterpart. Moreover, subordinate mice, at the end of the stress period were heavier in comparison to dominant animals. This last result was due to a decrease in the caloric efficiency of dominant animals in comparison to subordinates. Confirming this, the results of the experiment 2 showed that dominant mice significantly increase their energy expenditure at the end of the chronic psychosocial stress procedure in comparison to subordinate mice, as measured by indirect calorimetry. When a palatable high fat diet was available subordinate animals became heavier in comparison with both dominant and control animals. No differences in the caloric intake were found between groups. Subordinate mice ingested more calories from fat than controls, while dominant animals ingested more calories from carbohydrates. These results suggest that psychosocial stress can be a risk factor for overeating and weight gain in mice. However, social status influences the extent to which an individual keeps up with adverse environment, influencing the vulnerability toward stress related disorders.
Neuroscience & Biobehavioral Reviews | 2009
Roberto Coccurello; Francesca R. D'Amato; Anna Moles
Obesity is a current health pandemia. Determinants of this pathology are rather complex and include genetic, developmental and environmental factors only partially disclosed. Stress related neuroendocrine dysregulation and overconsumption of high palatable high caloric food and are likely to contribute to this modern health threats. Despite the evidence that psychosocial stress is one of the main sources of stress in humans and may play an important role in the development of the stress disorders, including obesity and metabolic syndrome, animal models focusing on the relationship between chronic stress and energy homeostasis are scattered and most of them encompasses physical rather than psychosocial stress. Aim of the present paper is to review rodent studies on the effect of psychosocial stress throughout life on body weight and food intake regulation. In the second part of the review special focus will be given on the mechanisms linking stress and the reward system.
PLOS ONE | 2011
Francesca R. D'Amato; Claudio Zanettini; Valentina Lampis; Roberto Coccurello; Tiziana Pascucci; Rossella Ventura; Stefano Puglisi-Allegra; Chiara A. M. Spatola; Paola Pesenti-Gritti; Diego Oddi; Anna Moles; Marco Battaglia
Background In man, many different events implying childhood separation from caregivers/unstable parental environment are associated with heightened risk for panic disorder in adulthood. Twin data show that the occurrence of such events in childhood contributes to explaining the covariation between separation anxiety disorder, panic, and the related psychobiological trait of CO2 hypersensitivity. We hypothesized that early interference with infant-mother interaction could moderate the interspecific trait of response to CO2 through genetic control of sensitivity to the environment. Methodology Having spent the first 24 hours after birth with their biological mother, outbred NMRI mice were cross-fostered to adoptive mothers for the following 4 post-natal days. They were successively compared to normally-reared individuals for: number of ultrasonic vocalizations during isolation, respiratory physiology responses to normal air (20%O2), CO2-enriched air (6% CO2), hypoxic air (10%O2), and avoidance of CO2-enriched environments. Results Cross-fostered pups showed significantly more ultrasonic vocalizations, more pronounced hyperventilatory responses (larger tidal volume and minute volume increments) to CO2-enriched air and heightened aversion towards CO2-enriched environments, than normally-reared individuals. Enhanced tidal volume increment response to 6%CO2 was present at 16–20, and 75–90 postnatal days, implying the traits stability. Quantitative genetic analyses of unrelated individuals, sibs and half-sibs, showed that the genetic variance for tidal volume increment during 6%CO2 breathing was significantly higher (Bartlett χ = 8.3, p = 0.004) among the cross-fostered than the normally-reared individuals, yielding heritability of 0.37 and 0.21 respectively. These results support a stress-diathesis model whereby the genetic influences underlying the response to 6%CO2 increase their contribution in the presence of an environmental adversity. Maternal grooming/licking behaviour, and corticosterone basal levels were similar among cross-fostered and normally-reared individuals. Conclusions A mechanism of gene-by-environment interplay connects this form of early perturbation of infant-mother interaction, heightened CO2 sensitivity and anxiety. Some non-inferential physiological measurements can enhance animal models of human neurodevelopmental anxiety disorders.
British Journal of Pharmacology | 2013
Tiziana Bisogno; Anu Mahadevan; Roberto Coccurello; Jae Won Chang; Marco Allarà; Yugang Chen; Giacomo Giacovazzo; Aron H. Lichtman; Benjamin F. Cravatt; Anna Moles; Vincenzo Di Marzo
The development of potent and selective inhibitors of the biosynthesis of the endocannabinoid 2‐arachidonoylglycerol (2‐AG) via DAG lipases (DAGL) α and β is just starting to be considered as a novel and promising source of pharmaceuticals for the treatment of disorders that might benefit from a reduction in endocannabinoid tone, such as hyperphagia in obese subjects.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Gustavo Provensi; Roberto Coccurello; Hayato Umehara; Leonoardo Munari; Giacomo Giacovazzo; Nicoletta Galeotti; Daniele Nosi; Silvana Gaetani; Adele Romano; Anna Moles; Patrizio Blandina; Maria Beatrice Passani
Significance Several endogenous molecules contribute to the building of a complex network of neural and hormonal signals that align food intake and energy expenditure. Cerebral histamine works as a satiety factor by activating histamine H1 receptor (H1R) in specific hypothalamic nuclei. Indeed, atypical antipsychotics presumably cause obesity by targeting brain H1R. The endogenous lipid messenger oleoylethanolamide (OEA) mediates fat-induced satiety by engaging sensory fibers of the vagus nerve that project centrally. We find that depletion of brain histamine blunts OEA-induced hypophagia in mice. Our study uncovers previously unidentified neural signaling mechanisms involved in the anorectic action of OEA. Our data offer new perspectives for developing more effective and safer pharmacotherapies to treat obesity and ameliorate the profile of centrally acting drugs. Key factors driving eating behavior are hunger and satiety, which are controlled by a complex interplay of central neurotransmitter systems and peripheral stimuli. The lipid-derived messenger oleoylethanolamide (OEA) is released by enterocytes in response to fat intake and indirectly signals satiety to hypothalamic nuclei. Brain histamine is released during the appetitive phase to provide a high level of arousal in anticipation of feeding, and mediates satiety. However, despite the possible functional overlap of satiety signals, it is not known whether histamine participates in OEA-induced hypophagia. Using different experimental settings and diets, we report that the anorexiant effect of OEA is significantly attenuated in mice deficient in the histamine-synthesizing enzyme histidine decarboxylase (HDC-KO) or acutely depleted of histamine via interocerebroventricular infusion of the HDC blocker α-fluoromethylhistidine (α-FMH). α-FMH abolished OEA-induced early occurrence of satiety onset while increasing histamine release in the CNS with an H3 receptor antagonist-increased hypophagia. OEA augmented histamine release in the cortex of fasted mice within a time window compatible to its anorexic effects. OEA also increased c-Fos expression in the oxytocin neurons of the paraventricular nuclei of WT but not HDC-KO mice. The density of c-Fos immunoreactive neurons in other brain regions that receive histaminergic innervation and participate in the expression of feeding behavior was comparable in OEA-treated WT and HDC-KO mice. Our results demonstrate that OEA requires the integrity of the brain histamine system to fully exert its hypophagic effect and that the oxytocin neuron-rich nuclei are the likely hypothalamic area where brain histamine influences the central effects of OEA.
Journal of Pharmacology and Experimental Therapeutics | 2012
Antonio Caprioli; Roberto Coccurello; Cinzia Rapino; Stefano Di Serio; Monia Di Tommaso; Mario Vertechy; Valentina Vacca; Natalia Battista; Flaminia Pavone; Mauro Maccarrone; Franco Borsini
The effect of the enol carbamate 1-biphenyl-4-ylethenyl piperidine-1-carboxylate (ST4070), a novel reversible inhibitor of fatty acid amide hydrolase (FAAH), was investigated for acute pain sensitivity and neuropathic pain in rats and mice. Brain enzymatic activity of FAAH and the endogenous levels of its substrates, anandamide (AEA; N-arachidonoylethanolamine), 2-arachidonoylglycerol (2-AG), and N-palmitoylethanolamine (PEA), were measured in control and ST4070-treated mice. ST4070 (10, 30, and 100 mg/kg) was orally administered to assess mechanical nociceptive thresholds and allodynia by using the Randall-Selitto and von Frey tests, respectively. Neuropathy was induced in rats by either the chemotherapeutic agent vincristine or streptozotocin-induced diabetes, whereas the chronic constriction injury (CCI) model was chosen to evaluate neuropathy in mice. ST4070 produced a significant increase of nociceptive threshold in rats and counteracted the decrease of nociceptive threshold in the three distinct models of neuropathic pain. In diabetic mice, ST4070 inhibited FAAH activity and increased the brain levels of AEA and PEA, without affecting that of 2-AG. The administration of ST4070 generated long-lasting pain relief compared with pregabalin and the FAAH inhibitors 1-oxo-1[5-(2-pyridyl)-2-yl]-7-phenylheptane (OL135) and cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-ylester (URB597) in CCI neuropathic mice. The antiallodynic effects of ST4070 were prevented by pretreatment with cannabinoid type 1 and cannabinoid type 2 receptor antagonists and by the selective peroxisome proliferator-activated receptor α antagonist [(2S)-2-[[(1Z)-1-methyl-3-oxo-3-[4-(trifluoromethyl)phenyl]-1-propenyl]amino]-3-[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]propyl]-carbamic acid ethyl ester (GW6471). The administration of ST4070 generated long-lasting neuropathic pain relief compared with pregabalin and the FAAH inhibitors OL135 and URB597. Taken together, the reversible FAAH inhibitor ST4070 seems to be a promising novel therapeutic agent for the management of neuropathic pain.
Nature Communications | 2017
Annalisa Nobili; Emanuele Claudio Latagliata; Maria Teresa Viscomi; Virve Cavallucci; Debora Cutuli; Giacomo Giacovazzo; Paraskevi Krashia; Francesca Romana Rizzo; Ramona Marino; Mauro Federici; Paola De Bartolo; Daniela Aversa; Maria Concetta Dell’Acqua; Alberto Cordella; Marco Sancandi; Flavio Keller; Laura Petrosini; Stefano Puglisi-Allegra; Nicola B. Mercuri; Roberto Coccurello; Nicola Berretta; Marcello D’Amelio
Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimers disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing.
Cerebral Cortex | 2013
Rossella Ventura; Roberto Coccurello; Diego Andolina; Emanuele Claudio Latagliata; Claudio Zanettini; Valentina Lampis; Marco Battaglia; Francesca R. D'Amato; Anna Moles
Evidence shows that maternal care and postnatal traumatic events can exert powerful effects on brain circuitry development but little is known about the impact of early postnatal experiences on processing of rewarding and aversive stimuli related to the medial prefrontal cortex (mpFC) function in adult life. In this study, the unstable maternal environment induced by repeated cross-fostering (RCF) impaired palatable food conditioned place preference and disrupted the natural preference for sweetened fluids in the saccharin preference test. By contrast, RCF increased sensitivity to conditioned place aversion (CPA) and enhanced immobility in the forced swimming test. Intracerebral microdialysis data showed that the RCF prevents mpFC dopamine (DA) outflow regardless of exposure to rewarding or aversive stimuli, whereas it induces a strong and sustained prefrontal norepinephrine (NE) release in response to different aversive experiences. Moreover, the selective mpFC NE depletion abolished CPA, thus indicating that prefrontal NE is required for motivational salience attribution to aversion-related stimuli. These findings demonstrate that an unstable maternal environment impairs the natural propensity to seek pleasurable sources of reward, enhances sensitivity to negative events in adult life, blunts prefrontal DA outflow, and modulates NE release in the reverse manner depending on the exposure to rewarding or aversive stimuli.
Peptides | 2013
Adele Romano; Tommaso Cassano; Bianca Tempesta; Silvia Cianci; Pasqua Dipasquale; Roberto Coccurello; Vincenzo Cuomo; Silvana Gaetani
The anandamide monounsaturated analogue oleoylethanolamide (OEA) acts as satiety signal released from enterocytes upon the ingestion of dietary fats to prolong the interval to the next meal. This effect, which requires intact vagal fibers and intestinal PPAR-alpha receptors, is coupled to the increase of c-fos and oxytocin mRNA expression in neurons of the paraventricular nucleus (PVN) and is prevented by the intracerebroventricular administration of a selective oxytocin antagonist, thus suggesting a necessary role of oxytocinergic neurotransmission in the pro-satiety effect of OEA. By brain microdialysis and immunohistochemistry, in this study we demonstrate that OEA treatment can stimulate oxytocin neurosecretion from the PVN and enhance oxytocin expression at both axonal and somatodendritic levels of hypothalamic neurons. Such effects, which are maximum 2h after OEA administration, support the hypothesis that the satiety-inducing action of OEA is mediated by the activation of oxytocin hypothalamic neurons.
Journal of Pharmacology and Experimental Therapeutics | 2008
Roberto Coccurello; Antonio Caprioli; Roberto Conti; Orlando Ghirardi; Franco Borsini; Paolo Carminati; Anna Moles
A mouse model of atypical antipsychotic-associated adverse effects was used to compare the liability to induce weight gain, food intake, and metabolic alterations after chronic olanzapine (OL; LY170053, 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno-[2,3-b][1,5] benzodiazepine) and ST2472 (ST; 9-piperazin-1-ylpyrrolo[2,1-b][1,3]benzothiazepine) administration. By adding two equipotent doses (3 and 6 mg/kg) of either OL or ST to a high-sweet, high-fat (HS-HF) diet, mice were allowed to self-administer drugs up to 50 days. Body weight and food intake were evaluated daily. Locomotor activity was recorded over 48 h at two different time points. Dyslipidemia was measured by central visceral obesity. Blood serum levels of insulin (IN), glucose (Glu), triglycerides (TGs), nonesterified fatty acids (NEFAs), cholesterol (Ch), and ketone (Ke) bodies were quantified. OL treatment at 3 mg/kg enhanced body weight, whereas at the highest dose, the increase became evident only during the last 10 days of treatment. OL (3 mg/kg) increased HS-HF intake over time, whereas the highest dose reduced intake during the second 10 and final 10 days of administration. Both compounds induced nocturnal hypomotility at the highest dose. In contrast to ST, 3 mg/kg OL elevated serum levels of IN, Glu, TG, NEFA, Ch, and Ke, whereas 6 mg/kg OL elevated those of Glu, TG, and Ch. In contrast, ST did not affect weight gain, food intake, and metabolic markers. Given the similarities between OL-induced obesogenic effects and medical reports, this study further supports the view that ST may represent a new class of agents characterized by a low propensity to induce side effects with promising clinical safety.