Roberto Giovannoni
University of Milano-Bicocca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Giovannoni.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Marialuisa Lavitrano; Maria Laura Bacci; Monica Forni; Davide Lazzereschi; Carla Di Stefano; Daniela Fioretti; Paola Giancotti; Gabriella Marfe; Loredana Pucci; Luigina Renzi; Hongjun Wang; Antonella Stoppacciaro; Giorgio Stassi; Massimo Sargiacomo; Paola Sinibaldi; Valeria Turchi; Roberto Giovannoni; Giacinto Della Casa; E. Seren; Giancarlo Rossi
A large number of hDAF transgenic pigs to be used for xenotransplantation research were generated by using sperm-mediated gene transfer (SMGT). The efficiency of transgenesis obtained with SMGT was much greater than with any other method. In the experiments reported, up to 80% of pigs had the transgene integrated into the genome. Most of the pigs carrying the hDAF gene transcribed it in a stable manner (64%). The great majority of pigs that transcribed the gene expressed the protein (83%). The hDAF gene was transmitted to progeny. Expression was stable and found in caveolae as it is in human cells. The expressed gene was functional based on in vitro experiments performed on peripheral blood mononuclear cells. These results show that our SMGT approach to transgenesis provides an efficient procedure for studies involving large animal models.
Reproduction, Fertility and Development | 2006
Marialuisa Lavitrano; M. Busnelli; Maria Grazia Cerrito; Roberto Giovannoni; S. Manzini; Alessia Vargiolu
Since 1989, a new method for the production of transgenic animals has been available, namely sperm-mediated gene transfer (SMGT), based on the intrinsic ability of sperm cells to bind and internalise exogenous DNA molecules and to transfer them into the oocyte at fertilisation. We first described the SMGT procedure in a small animal model, with high efficiency reported in the mouse. In addition, we successfully adapted and optimised the technique for use in large animals; it was, in fact, highly efficient in the generation of human decay accelerating factor transgenic pig lines, as well as multigene transgenic pigs in which three different reporter genes, namely enhanced green fluorescent protein, enhanced blue fluorescent protein and red fluorescent protein, were introduced. The major benefits of the SMGT technique were found to be its high efficiency, low cost and ease of use compared with other methods. Furthermore, SMGT does not require embryo handling or expensive equipment. Sperm-mediated gene transfer could also be used to generate multigene transgenic pigs that would be of benefit as large animal models for medical research, for agricultural and pharmaceutical applications and, in particular, for xenotransplantation, which requires extensive genetic manipulation of donor pigs to make them suitable for grafting to humans.
Proceedings of the National Academy of Sciences of the United States of America | 2006
S. Manzini; Alessia Vargiolu; Isa M. Stehle; Maria Laura Bacci; Maria Grazia Cerrito; Roberto Giovannoni; Augusta Zannoni; Maria Rosaria Bianco; Monica Forni; Pierluigi Donini; Michele Papa; Hans J. Lipps; Marialuisa Lavitrano
Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy.
The FASEB Journal | 2004
Marialuisa Lavitrano; Ryszard T. Smolenski; Antonino Musumeci; Massimo Maccherini; Ewa M. Slominska; Ernesto Di Florio; Adele Bracco; Antonio Mancini; Giorgio Stassi; Mariella Patti; Roberto Giovannoni; Alberto Froio; Felicetta Simeone; Monica Forni; Maria Laura Bacci; Giuseppe D’Alise; Emanuele Cozzi; Leo E. Otterbein; Magdi H. Yacoub; Fritz H. Bach; Fulvio Calise
Ischemia‐reperfusion injury, a clinical problem during cardiac surgery, involves worsened adenosine trisphosphate (ATP) generation and damage to the heart. We studied carbon monoxide (CO) pretreatment, proven valuable in rodents but not previously tested in large animals, for its effects on pig hearts subjected to cardiopulmonary bypass with cardioplegic arrest. Hearts of CO‐treated pigs showed significantly higher ATP and phosphocreatine levels, less interstitial edema, and apoptosis of cardiomyocytes and required fewer defibrillations after bypass. We conclude that treatment with CO improves the energy status, prevents edema formation and apoptosis, and facilitates recovery in a clinically relevant model of cardiopulmonary bypass surgery.
The Journal of Neuroscience | 2004
Daniela Canzoniere; Stefano Farioli-Vecchioli; Filippo Conti; Maria Teresa Ciotti; Ada Maria Tata; Gabriella Augusti-Tocco; Elisabetta Mattei; Madepalli K. Lakshmana; Valery Krizhanovsky; Steven A. Reeves; Roberto Giovannoni; Francesca Castano; Antonio Servadio; Nissim Ben-Arie; Felice Tirone
Growing evidence indicates that cell cycle arrest and neurogenesis are highly coordinated and interactive processes, governed by cell cycle genes and neural transcription factors. The gene PC3 (Tis21/BTG2) is expressed in the neuroblast throughout the neural tube and inhibits cell cycle progression at the G1 checkpoint by repressing cyclin D1 transcription. We generated inducible mouse models in which the expression of PC3 was upregulated in neuronal precursors of the neural tube and of the cerebellum. These mice exhibited a marked increase in the production of postmitotic neurons and impairment of cerebellar development. Cerebellar granule precursors of PC3 transgenic mice displayed inhibition of cyclin D1 expression and a strong increase in the expression of Math1, a transcription factor required for their differentiation. Furthermore, PC3, encoded by a recombinant adenovirus, also induced Math1 in postmitotic granule cells in vitro and stimulated the Math1 promoter activity. In contrast, PC3 expression was unaffected in the cerebellar primordium of Math1 null mice, suggesting that PC3 acts upstream to Math1. As a whole, our data suggest that cell cycle exit of cerebellar granule cell precursors and the onset of cerebellar neurogenesis are coordinated by PC3 through transcriptional control of cyclin D1 and Math1, respectively.
Clinical Cancer Research | 2013
Emanuela Grassilli; Robert Narloch; Elena A. Federzoni; Leonarda Ianzano; Fabio Pisano; Roberto Giovannoni; Gabriele Romano; Laura Masiero; Biagio Eugenio Leone; Serena Bonin; Marisa Donada; Giorgio Stanta; Kristian Helin; Marialuisa Lavitrano
Purpose: Evasion from chemotherapy-induced apoptosis due to p53 loss strongly contributes to drug resistance. Identification of specific targets for the treatment of drug-resistant p53-null tumors would therefore increase the effectiveness of cancer therapy. Experimental Design: By using a kinase-directed short hairpin RNA library and HCT116p53KO drug-resistant colon carcinoma cells, glycogen synthase kinase 3 beta (GSK3B) was identified as a target whose silencing bypasses drug resistance due to loss of p53. p53-null colon cancer cell lines with different sets of mutations were used to validate the role of GSK3B in sustaining resistance and to characterize cell death mechanisms triggered by chemotherapy when GSK3B is silenced. In vivo xenograft studies were conducted to confirm resensitization of drug-resistant cells to chemotherapy upon GSK3 inhibition. Colon cancer samples from a cohort of 50 chemotherapy-treated stage II patients were analyzed for active GSK3B expression. Results: Downregulation of GSK3B in various drug-resistant p53-null colon cancer cell lines abolished cell viability and colony growth after drug addition without affecting cell proliferation or cell cycle in untreated cells. Cell death of 5-fluorouracil (5FU)–treated p53-null GSK3B-silenced colon carcinoma cells occurred via PARP1-dependent and AIF-mediated but RIP1-independent necroptosis. In vivo studies showed that drug-resistant xenograft tumor mass was significantly reduced only when 5FU was given after GSK3B inhibition. Tissue microarray analysis of colon carcinoma samples from 5FU-treated patients revealed that GSK3B is significantly more activated in drug-resistant versus responsive patients. Conclusions: Targeting GSK3B, in combination with chemotherapy, may represent a novel strategy for the treatment of chemotherapy-resistant tumors. Clin Cancer Res; 19(14); 3820–31. ©2013 AACR.
Nucleic Acids Research | 2013
Alessia Tempestini; Valeria Cassina; Doriano Brogioli; Roberto Ziano; Simona Erba; Roberto Giovannoni; Maria Grazia Cerrito; Domenico Salerno; Francesco Mantegazza
The opening of DNA double strands is extremely relevant to several biological functions, such as replication and transcription or binding of specific proteins. Such opening phenomenon is particularly sensitive to the aqueous solvent conditions in which the DNA molecule is dispersed, as it can be observed by considering the classical dependence of DNA melting temperature on pH and salt concentration. In the present work, we report a single-molecule study of the stability of DNA against denaturation when subjected to changes in solvent. We investigated the appearance of DNA instability under specific external applied force and imposed twist values, which was revealed by an increase in the temporal fluctuations in the DNA extension. These fluctuations occur in the presence of a continuous interval of equilibrium states, ranging from a plectonemic state to a state characterized by denaturation bubbles. In particular, we observe the fluctuations only around a characteristic force value. Moreover, this characteristic force is demonstrated to be notably sensitive to variations in the pH and ionic strength. Finally, an extension of a theoretical model of plectoneme formation is used to estimate the average denaturation energy, which is found to be linearly correlated to the melting temperature of the DNA double strands.
Neuron Glia Biology | 2007
Roberto Giovannoni; Nicola Maggio; Maria Rosaria Bianco; Carlo Cavaliere; Giovanni Cirillo; Marialuisa Lavitrano; Michele Papa
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeats within the coding sequence of the ataxin-1 protein. In the present study, we used a conditional transgenic mouse model of SCA1 to investigate very early molecular and morphological changes related to the behavioral phenotype. In mice with neural deficits detected by rotarod performance, and simultaneous spatial impairments in exploratory activity and uncoordinated gait, we observed both significant altered expression and patchy distribution of excitatory amino acids transporter 1. The molecular changes observed in astroglial compartments correlate with changes in synapse morphology; synapses have a dramatic reduction of the synaptic area external to the postsynaptic density. By contrast, Purkinje cells demonstrate preserved structure. In addition, severe reactive astrocytosis matches changes in the glial glutamate transporter and synapse morphology. We propose these morpho-molecular changes are the cause of altered synaptic transmission, which, in turn, determines the onset of the neurological symptoms by altering the synaptic transmission in the cerebellar cortex of transgenic animals. This model might be suitable for testing drugs that target activated glial cells in order to reduce CNS inflammation.
Atherosclerosis | 2009
Marco Busnelli; Alberto Froio; Maria Laura Bacci; Massimo Giunti; Maria Grazia Cerrito; Roberto Giovannoni; Monica Forni; Fabio Gentilini; Alessandra Scagliarini; Gaetano Deleo; Cristian Benatti; Biagio Eugenio Leone; Giorgio M. Biasi; Marialuisa Lavitrano
OBJECTIVE Most strategies against intimal hyperplasia developed in several preclinical models failed in terms of clinical application, often due to a discrepancy between animal and human disease. The aim of this study was to setup for the first time a porcine vascular injury model with mild hypercholesterolemia able to significantly increase the degree of stenosis resembling human settings and investigate the pathogenetic role of hypercholesterolemia on protective genes and inflammatory response affecting matrix deposition and cell proliferation. METHODS Pigs were fed with standard (SD, n=7) or high-cholesterol diet (HCD, n=7) for 120 days. A balloon angioplasty injury was induced in carotid arteries. RESULTS Hypercholesterolemia induced a mild significant increase of total and LDL cholesterolemia. HCD significantly increased the degree of stenosis (48+/-3% vs. 13+/-4%, p=0.001), with induction of cell proliferation, matrix deposition, TGF-beta1/TGFbetaRII and MMP2 expression and reduction of collagen. The reduced expression of the protective gene heme oxygenase-1 and inducible-nitric oxide synthase in HCD was associated to a systemic inflammation with a significant increase in circulating leukocytes, serum IFN-gamma and TNF-alpha and a local inflammatory response with an increase of CD3-positive cell infiltrates. There was a significant correlation between CD3 infiltrates and the degree of stenosis. CONCLUSION We developed for the first time a porcine vascular injury model with mild hypercholesterolemia able to significantly increase the degree of stenosis and showed the pathogenetic role of hypercholesterolemia on intimal hyperplasia. New therapeutical strategies to prevent restenosis can be tested in this preclinical hypercholesterolemic model resembling human disease.
PLOS ONE | 2017
Chiara Cilibrasi; Gabriele Riva; Gabriele Romano; Massimiliano Cadamuro; Riccardo Bazzoni; Valentina Butta; Laura Paoletta; Leda Dalprà; M. Strazzabosco; Marialuisa Lavitrano; Roberto Giovannoni; Angela Bentivegna
Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common form of malignant brain tumor in adults. GBM remains one of the most fatal and least successfully treated solid tumors: current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. Glioma Stem Cells (GSCs) are believed to be the real driving force of tumor initiation, progression and relapse. Therefore, better therapeutic strategies GSCs-targeted are needed. Resveratrol is a polyphenolic phytoalexin found in fruits and vegetables displaying pleiotropic health benefits. Many studies have highlighted its chemo-preventive and chemotherapeutic activities in a wide range of solid tumors. In this work, we analyzed the effects of Resveratrol exposure on cell viability, proliferation and motility in seven GSC lines isolated from GBM patients. For the first time in our knowledge, we investigated Resveratrol impact on Wnt signaling pathway in GSCs, evaluating the expression of seven Wnt signaling pathway-related genes and the protein levels of c-Myc and β-catenin. Finally, we analyzed Twist1 and Snail1 protein levels, two pivotal activators of epithelial-mesenchymal transition (EMT) program. Results showed that although response to Resveratrol exposure was highly heterogeneous among GSC lines, generally it was able to inhibit cell proliferation, increase cell mortality, and strongly decrease cell motility, modulating the Wnt signaling pathway and the EMT activators. Treatment with Resveratrol may represent a new interesting therapeutic approach, in order to affect GSCs proliferation and motility, even if further investigations are needed to deeply understand the GSCs heterogeneous response.