Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Gwiazda is active.

Publication


Featured researches published by Roberto Gwiazda.


Occupational and Environmental Medicine | 2007

Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders

Rosemarie M. Bowler; Harry A. Roels; Sanae Nakagawa; Marija Drezgic; Emily Diamond; Robert M. Park; William C. Koller; Russell P Bowler; Donna Mergler; Maryse F. Bouchard; Donald Smith; Roberto Gwiazda; Richard L. Doty

Background: Although adverse neuropsychological and neurological health effects are well known among workers with high manganese (Mn) exposures in mining, ore-processing and ferroalloy production, the risks among welders with lower exposures are less well understood. Methods: Confined space welding in construction of a new span of the San Francisco–Oakland Bay Bridge without adequate protection was studied using a multidisciplinary method to identify the dose–effect relationship between adverse health effects and Mn in air or whole blood. Bridge welders (n = 43) with little or no personal protection equipment and exposed to a welding fume containing Mn, were administered neurological, neuropsychological, neurophysiological and pulmonary tests. Outcome variables were analysed in relation to whole blood Mn (MnB) and a Cumulative Exposure Index (CEI) based on Mn-air, duration and type of welding. Welders performed a mean of 16.5 months of welding on the bridge, were on average 43.8 years of age and had on average 12.6 years of education. Results: The mean time weighted average of Mn-air ranged from 0.11–0.46 mg/m3 (55% >0.20 mg/m3). MnB >10 µg/l was found in 43% of the workers, but the concentrations of Mn in urine, lead in blood and copper and iron in plasma were normal. Forced expiratory volume at 1s: forced vital capacity ratios (FEV1/FVC) were found to be abnormal in 33.3% of the welders after about 1.5 years of welding at the bridge. Mean scores of bradykinesia and Unified Parkinson Disease Rating Scale exceeded 4 and 6, respectively. Computer assisted tremor analysis system hand tremor and body sway tests, and University of Pennsylvania Smell Identification Test showed impairment in 38.5/61.5, 51.4 and 88% of the welders, respectively. Significant inverse dose–effect relationships with CEI and/or MnB were found for IQ (p⩽0.05), executive function (p⩽0.03), sustaining concentration and sequencing (p⩽0.04), verbal learning (p⩽0.01), working (p⩽0.04) and immediate memory (p⩽0.02), even when adjusted for demographics and years of welding before Bay Bridge. Symptoms reported by the welders while working were: tremors (41.9%); numbness (60.5%); excessive fatigue (65.1%); sleep disturbance (79.1%); sexual dysfunction (58.1%); toxic hallucinations (18.6%); depression (53.5%); and anxiety (39.5%). Dose–effect associations between CEI and sexual function (p<0.05), fatigue (p<0.05), depression (p<0.01) and headache (p<0.05) were statistically significant. Conclusions: Confined space welding was shown to be associated with neurological, neuropsychological and pulmonary adverse health effects. A careful enquiry of occupational histories is recommended for all welders presenting with neurological or pulmonary complaints, and a more stringent prevention strategy should be considered for Mn exposure due to inhalation of welding fume.


Neurotoxicology | 2002

Low Cumulative Manganese Exposure Affects Striatal GABA but not Dopamine

Roberto Gwiazda; D. Lee; J. Sheridan; Donald R. Smith

The introduction of the anti-knock methylcyclopentadienyl manganese (Mn) tricarbonyl (MMT) in gasoline has raised concerns about the potential for manganese neurotoxicity. Because subpopulations such as the elderly in the early stages of neurodegenerative disease may be at increased risk for manganese toxicity, a pre-Parkinsonism rat model was used to evaluate whether sub-chronic manganese exposure can aggravate the neurochemical and behavioral dysfunctions characteristic of Parkinsonism. Sub-threshold levels of dopamine depletion of 3.5, 53 and 68% were generated via intrastriatal unilateral 6-hydroxydopamine (6-OHDA) doses. A sub-chronic dosing regimen of low cumulative manganese exposure (4.8 mg Mn/kg body weight, 3 i.p. injections per week x 5 weeks) was started 4 weeks after 6-OHDA treatments. Neurochemical and neuromotor (functional observational battery (FOB)) measures were evaluated. Manganese produced significant (P < 0.05) reductions of 30-60% in motor function. This effect was exacerbated in the presence of a pre-Parkinsonism condition [Neurotox. Teratol. 22 (2000) 851]. Manganese did not affect striatal dopamine, but resulted in significant increases in striatal y-aminobutyric acid (GABA) of 16 and 22% (P < 0.01) in both striati and a borderline non-significant 4% increase in frontal cortex (P = 0.076). Manganese treatment produced increased aspartate (P < 0.01) in the manganese and 6-OHDA treated striatum. In light of previous studies predominantly showing dopamine depletion with elevated manganese exposures, the significant effects of manganese on striatal GABA but not on striatal dopamine at the low cumulative exposure administered here suggest a progression in manganese toxicity with increasing cumulative dose, whereby GABA levels are adversely affected before striatal dopamine levels. Because these neurochemical disruptions were accompanied by motor dysfunction that was exacerbated in the presence of a pre-Parkinsonism condition, an increased environmental burden of manganese may have deleterious effects on populations with sub-threshold neurodegeneration in the basal ganglia (e.g. pre-Parkinsonism).


Journal of Toxicology and Environmental Health | 2007

Adequacy and Consistency of Animal Studies to Evaluate the Neurotoxicity of Chronic Low-Level Manganese Exposure in Humans

Roberto Gwiazda; Roberto Lucchini; Donald R. Smith

The adequacy of existing animal studies to understand the effects of chronic low-level manganese exposures in humans is unclear. Here, a collection of subchronic to chronic rodent and nonhuman primate studies was evaluated to determine whether there is a consistent dose-response relationship among studies, whether there is a progression of effects with increasing dose, and whether these studies are adequate for evaluating the neurotoxicity of chronic low-level manganese exposures in humans. Neurochemical and behavioral effects were compared along the axis of estimated internal cumulative manganese dose, independent of the route of exposure. In rodents, motor effects emerged at cumulative doses below those where occupationally exposed humans start to show motor deficits. The main neurochemical effects in rodents were an increase in striatal gamma-aminobutyric acid (GABA) concentration throughout the internal cumulative dose range of 18 to 5300 mg Mn/kg but a variable effect on striatal dopamine concentration emerging at internal cumulative doses above ∼200 mg Mn/kg. Monkey studies showed motor deficits and effects on the globus pallidus at relatively low doses and consistent harmful effects on both the globus pallidus and the caudate and putamen at higher doses (> 260 mg Mn/kg). Internal cumulative manganese doses of animal studies extend more than two orders of magnitude (< 1 to 5300 mg Mn/kg) above the doses at which occupationally exposed humans show neurological dysfunction (10–15 mg Mn/kg). Since the animal data indicate that manganese neurotoxicity may be different at low compared to elevated exposures, most existing animal model studies might be of limited relevance for the risk assessment of chronic low-level manganese exposure to humans.


Environmental Health Perspectives | 2004

A noninvasive isotopic approach to estimate the bone lead contribution to blood in children: Implications for assessing the efficacy of lead abatement

Roberto Gwiazda; Carla Campbell; Donald R. Smith

Lead hazard control measures to reduce children’s exposure to household lead sources often result in only limited reductions in blood lead levels. This may be due to incomplete remediation of lead sources and/or to the remobilization of lead stores from bone, which may act as an endogenous lead source that buffers reductions in blood lead levels. Here we present a noninvasive isotopic approach to estimate the magnitude of the bone lead contribution to blood in children following household lead remediation. In this approach, lead isotopic ratios of a child’s blood and 5-day fecal samples are determined before and after a household intervention aimed at reducing the child’s lead intake. The bone lead contribution to blood is estimated from a system of mass balance equations of lead concentrations and isotopic compositions in blood at the different times of sample collection. The utility of this method is illustrated with three cases of children with blood lead levels in the range of 18–29 μg/dL. In all three cases, the release of lead from bone supported a substantial fraction of the measured blood lead level postintervention, up to 96% in one case. In general, the lead isotopic compositions of feces matched or were within the range of the lead isotopic compositions of the household dusts with lead loadings exceeding U.S. Environmental Protection Agency action levels. This isotopic agreement underscores the utility of lead isotopic measurements of feces to identify household sources of lead exposure. Results from this limited number of cases support the hypothesis that the release of bone lead into blood may substantially buffer the decrease in blood lead levels expected from the reduction in lead intake.


Toxicology and Applied Pharmacology | 2011

Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats ☆

Margaret H. Whittaker; Gensheng Wang; Xue-Qing Chen; Michael M. Lipsky; Donald R. Smith; Roberto Gwiazda; Bruce A. Fowler

Exposure to chemical mixtures is a common and important determinant of toxicity and is of particular concern due to their appearance in sources of drinking water. Despite this, few in vivo mixture studies have been conducted to date to understand the health impact of chemical mixtures compared to single chemicals. Interactive effects of lead (Pb), cadmium (Cd) and arsenic (As) were evaluated in 30-, 90-, and 180-day factorial design drinking water studies in rats designed to test the hypothesis that ingestion of such mixtures at individual component Lowest-Observed-Effect-Levels (LOELs) results in increased levels of the pro-oxidant delta aminolevulinic acid (ALA), iron, and copper. LOEL levels of Pb, Cd, and As mixtures resulted in the increased presence of mediators of oxidative stress such as ALA, copper, and iron. ALA increases were followed by statistically significant increases in kidney copper in the 90- and 180-day studies. Statistical evidence of interaction was identified for six biologically relevant variables: blood delta aminolevulinic acid dehydratase (ALAD), kidney ALAD, urinary ALA, urinary iron, kidney iron, and kidney copper. The current investigations underscore the importance of considering interactive effects that common toxic agents such as Pb, Cd, and As may have upon one another at low-dose levels. The interactions between known toxic trace elements at biologically relevant concentrations shown here demonstrate a clear need to rigorously review methods by which national/international agencies assess health risks of chemicals, since exposures may commonly occur as complex mixtures.


American Journal of Industrial Medicine | 2007

Biomarkers of Mn exposure in humans

Donald R. Smith; Roberto Gwiazda; Rosemarie M. Bowler; Harry Roels; Robert M. Park; Christopher Taicher; Roberto Lucchini


Advanced Materials | 2007

Testing Nanomaterials of Unknown Toxicity: An Example Based on Platinum Nanoparticles of Different Shapes†

Alison Elder; Hong Yang; Roberto Gwiazda; Xiaowei Teng; Sally W. Thurston; Hua He; Günter Oberdörster


Environmental Science & Technology | 2003

Lead poisoning of seabirds: Environmental risks from leaded paint at a decommissioned military base

Myra E. Finkelstein; Roberto Gwiazda; Donald R. Smith


Neurotoxicology | 2006

Issues in neurological risk assessment for occupational exposures : The Bay Bridge welders

Robert M. Park; Rosemarie M. Bowler; Donald E. Eggerth; Emily Diamond; Katie J. Spencer; Donald R. Smith; Roberto Gwiazda


Environmental Health Perspectives | 2000

Lead Isotopes as a Supplementary Tool in the Routine Evaluation of Household Lead Hazards

Roberto Gwiazda; Donald R. Smith

Collaboration


Dive into the Roberto Gwiazda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Park

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosemarie M. Bowler

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar

Marija Drezgic

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar

Richard L. Doty

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sanae Nakagawa

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar

Roberto Lucchini

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Koller

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge