Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Iglesias-Prieto is active.

Publication


Featured researches published by Roberto Iglesias-Prieto.


Science | 2007

Coral Reefs Under Rapid Climate Change and Ocean Acidification

Ove Hoegh-Guldberg; Peter J. Mumby; Anthony J. Hooten; Robert S. Steneck; P. F. Greenfield; Edgardo D. Gomez; C. D. Harvell; Peter F. Sale; Alasdair J. Edwards; Ken Caldeira; Nancy Knowlton; C. M. Eakin; Roberto Iglesias-Prieto; Nyawira A. Muthiga; Roger Bradbury; A. Dubi; Marea E. Hatziolos

Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.


Proceedings - Royal Society of London. Biological sciences | 2004

Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific.

Roberto Iglesias-Prieto; V. H. Beltrán; Todd C. LaJeunesse; H. Reyes-Bonilla; P. E. Thomé

Symbiotic reef corals occupy the entire photic zone; however, most species have distinct zonation patterns within the light intensity gradient. It is hypothesized that the presence of specific symbionts adapted to different light regimes may determine the vertical distribution of particular hosts. We have tested this hypothesis by genetic and in situ physiological analyses of the algal populations occupying two dominant eastern Pacific corals, over their vertical distribution in the Gulf of California. Our findings indicate that each coral species hosts a distinct algal taxon adapted to a particular light regime. The differential use of light by specific symbiotic dinoflagellates constitutes an important axis for niche diversification and is sufficient to explain the vertical distribution patterns of these two coral species.


Marine and Freshwater Research | 2013

Climate change impedes scleractinian corals as primary reef ecosystem engineers.

Christian Wild; Ove Hoegh-Guldberg; Malik S. Naumann; M. Florencia Colombo-Pallotta; Mebrahtu Ateweberhan; William K. Fitt; Roberto Iglesias-Prieto; Caroline V. Palmer; John C. Bythell; Juan-Carlos Ortiz; Yossi Loya; Robert van Woesik

Coral reefs are among the most diverse and productive ecosystems on our planet. Scleractinian corals function as the primary reef ecosystem engineers, constructing the framework that serves as a habitat for all other coral reef-associated organisms. However, the corals engineering role is particularly susceptible to global climate change. Ocean warming can cause extensive mass coral bleaching, which triggers dysfunction of major engineering processes. Sub-lethal bleaching results in the reduction of both primary productivity and coral calcification. This may lead to changes in the release of organic and inorganic products, thereby altering critical biogeochemical and recycling processes in reef ecosystems. Thermal stress-induced bleaching and subsequent coral mortality, along with ocean acidification, further lead to long-term shifts in benthic community structure, changes in topographic reef complexity, and the modification of reef functioning. Such shifts may cause negative feedback loops and further modification of coral-derived inorganic and organic products. This review emphasises the critical role of scleractinian corals as reef ecosystem engineers and highlights the control of corals over key reef ecosystem goods and services, including high biodiversity, coastal protection, fishing, and tourism. Thus, climate change by impeding coral ecosystem engineers will impair the ecosystem functioning of entire reefs.


Ecology Letters | 2011

Reserve design for uncertain responses of coral reefs to climate change

Peter J. Mumby; Ian A. Elliott; C. Mark Eakin; William J. Skirving; Claire B. Paris; Helen J. Edwards; Susana Enríquez; Roberto Iglesias-Prieto; Laurent M. Chérubin; Jamie R. Stevens

Rising sea temperatures cause mass coral bleaching and threaten reefs worldwide. We show how maps of variations in thermal stress can be used to help manage reefs for climate change. We map proxies of chronic and acute thermal stress and develop evidence-based hypotheses for the future response of corals to each stress regime. We then incorporate spatially realistic predictions of larval connectivity among reefs of the Bahamas and apply novel reserve design algorithms to create reserve networks for a changing climate. We show that scales of larval dispersal are large enough to connect reefs from desirable thermal stress regimes into a reserve network. Critically, we find that reserve designs differ according to the anticipated scope for phenotypic and genetic adaptation in corals, which remains uncertain. Attempts to provide a complete reserve design that hedged against different evolutionary outcomes achieved limited success, which emphasises the importance of considering the scope for adaptation explicitly. Nonetheless, 15% of reserve locations were selected under all evolutionary scenarios, making them a high priority for early designation. Our approach allows new insights into coral holobiont adaptation to be integrated directly into an adaptive approach to management.


Molecular Ecology | 2010

Coral host transcriptomic states are correlated with Symbiodinium genotypes

Michael K. DeSalvo; Shinichi Sunagawa; Paul Fisher; Christian R. Voolstra; Roberto Iglesias-Prieto; Mónica Medina

A mutualistic relationship between reef‐building corals and endosymbiotic dinoflagellates (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host‐Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene expression microarray. Interestingly, gene expression was more similar among samples with the same Symbiodinium content rather than the same experimental condition. In order to discount for host‐genotypic effects, we sampled fragments from a single colony of M. faveolata containing different symbiont types, and found that the host transcriptomic states grouped according to Symbiodinium genotype rather than thermal stress. As the first study that links coral host transcriptomic patterns to the clade content of their Symbiodinium community, our results provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral‐Symbiodinium partnerships.


Coral Reefs | 2010

Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol

M. F. Colombo-Pallotta; A. Rodríguez-Román; Roberto Iglesias-Prieto

All reef-building corals are symbiotic with dinoflagellates of the genus Symbiodinium, which influences many aspects of the host’s physiology including calcification. Coral calcification is a biologically controlled process performed by the host that takes place several membranes away from the site of photosynthesis performed by the symbiont. Although it is well established that light accelerates CaCO3 deposition in reef-building corals (commonly referred to as light-enhanced calcification), the complete physiological mechanism behind the process is not fully understood. To better comprehend the coral calcification process, a series of laboratory experiments were conducted in the major Caribbean reef-building species Montastraea faveolata, to evaluate the effect of glycerol addition and/or the super-saturation of oxygen in the seawater. These manipulations were performed in bleached and unbleached corals, to separate the effect of photosynthesis from calcification. The results suggest that under normal physiological conditions, a 42% increase in seawater oxygen concentration promotes a twofold increase in dark-calcification rates relative to controls. On the other hand, the results obtained using bleached corals suggest that glycerol is required, as a metabolic fuel, in addition to an oxygenic environment in a symbiosis that has been disrupted. Also, respiration rates in symbiotic corals that were pre-incubated in light conditions showed a kinetic limitation, whereas corals that were pre-incubated in darkness were oxygen limited, clearly emphasizing the role of oxygen in this regard. These findings indicate that calcification in symbiotic corals is not strictly a “light-enhanced” or “dark-repressed” process, but rather, the products of photosynthesis have a critical role in calcification, which should be viewed as a “photosynthesis-driven” process. The results presented here are discussed in the context of the current knowledge of the coral calcification process.


Geophysical Research Letters | 2005

Comment on “Coral reef calcification and climate change: The effect of ocean warming”

Joan A. Kleypas; Robert W. Buddemeier; C. M. Eakin; Jean-Pierre Gattuso; John M. Guinotte; Ove Hoegh-Guldberg; Roberto Iglesias-Prieto; P. L. Jokiel; Chris Langdon; William J. Skirving; Alan E. Strong

McNeil et al. [2004] attempt to address an important question about the interactions of temperature and carbonate chemistry on calcification, but their projected values of reef calcification are based on assumptions that ignore critical observational and experimental literature. Certainly, more research is needed to better understand how changing temperatures and carbonate chemistry will affect not only coral reef calcification, but coral survival. As discussed above, the McNeil et al. [2004] analysis is based on assumptions that exclude potentially important factors and therefore needs to be viewed with caution. Copyright 2005 by the American Geophysical Union.


Scientific Reports | 2013

Shifts in coral-assemblage composition do not ensure persistence of reef functionality

Lorenzo Alvarez-Filip; Juan P. Carricart-Ganivet; Guillermo Horta-Puga; Roberto Iglesias-Prieto

Coral communities are changing rapidly worldwide through loss of coral cover and shifts in species composition. Although many reef-building corals are likely to decline, some weedy opportunistic species might increase in abundance. Here we explore whether the reshuffling of species can maintain ecosystem integrity and functioning. Using four common Caribbean reef-building coral genera we modeled rates of reef construction and complexity. We show that shifting coral assemblages result in rapid losses in coral-community calcification and reef rugosity that are independent of changes in the total abundance of reef corals. These losses are considerably higher than those recently attributed to climate change. Dominance patterns of coral assemblages seem to be the most important driver of the functioning of coral reefs and thus, the future of these ecosystems might depend not only on reductions of local and global stressors, but also on the maintenance of keystone coral species.


PLOS ONE | 2011

A Connection between Colony Biomass and Death in Caribbean Reef-Building Corals

Daniel J. Thornhill; Randi D. Rotjan; Brian D. Todd; Geoff C. Chilcoat; Roberto Iglesias-Prieto; Dustin W. Kemp; Todd C. LaJeunesse; Jennifer McCabe Reynolds; Gregory W. Schmidt; Thomas Shannon; Mark E. Warner; William K. Fitt

Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.


Plant Cell and Environment | 2008

Host pigments: potential facilitators of photosynthesis in coral symbioses

Sophie Dove; Carli Lovell; Maoz Fine; Jeffrey Deckenback; Ove Hoegh-Guldberg; Roberto Iglesias-Prieto; Kenneth R.N. Anthony

Reef-building corals occur as a range of colour morphs because of varying types and concentrations of pigments within the host tissues, but little is known about their physiological or ecological significance. Here, we examined whether specific host pigments act as an alternative mechanism for photoacclimation in the coral holobiont. We used the coral Montipora monasteriata (Forskål 1775) as a case study because it occurs in multiple colour morphs (tan, blue, brown, green and red) within varying light-habitat distributions. We demonstrated that two of the non-fluorescent host pigments are responsive to changes in external irradiance, with some host pigments up-regulating in response to elevated irradiance. This appeared to facilitate the retention of antennal chlorophyll by endosymbionts and hence, photosynthetic capacity. Specifically, net P(max) Chl a(-1) correlated strongly with the concentration of an orange-absorbing non-fluorescent pigment (CP-580). This had major implications for the energetics of bleached blue-pigmented (CP-580) colonies that maintained net P(max) cm(-2) by increasing P(max) Chl a(-1). The data suggested that blue morphs can bleach, decreasing their symbiont populations by an order of magnitude without compromising symbiont or coral health.

Collaboration


Dive into the Roberto Iglesias-Prieto's collaboration.

Top Co-Authors

Avatar

Susana Enríquez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Mumby

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Mónica Medina

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blas Lotina-Hennsen

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Juan P. Carricart-Ganivet

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aimé Rodríguez-Román

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Patricia E. Thomé

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge