Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Mallone is active.

Publication


Featured researches published by Roberto Mallone.


Diabetologia | 2009

Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells

A.M. Madec; Roberto Mallone; G. Afonso; E. Abou Mrad; A. Mesnier; A. Eljaafari; Charles Thivolet

Aims/hypothesisDisplaying immunomodulatory capacities, mesenchymal stem cells (MSCs) are considered as beneficial agents for autoimmune diseases. The aim of this study was to examine the ability of MSCs to prevent autoimmune diabetes in the NOD mouse model.MethodsPrevention of spontaneous insulitis or of diabetes was evaluated after a single i.v. injection of MSCs in 4-week-old female NOD mice, or following the co-injection of MSCs and diabetogenic T cells in irradiated male NOD recipients, respectively. The frequency of CD4+FOXP3+ cells and Foxp3 mRNA levels in the spleen of male NOD recipients were also quantified. In vivo cell homing was assessed by monitoring 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE)-labelled T cells or MSCs. In vitro, cell proliferation and cytokine production were assessed by adding graded doses of irradiated MSCs to insulin B9–23 peptide-specific T cell lines in the presence of irradiated splenocytes pulsed with the peptide.ResultsMSCs reduced the capacity of diabetogenic T cells to infiltrate pancreatic islets and to transfer diabetes. This protective effect was not associated with the modification of diabetogenic T cell homing, but correlated with a preferential migration of MSCs to pancreatic lymph nodes. While injection of diabetogenic T cells resulted in a decrease in levels of FOXP3+ regulatory T cells, this decrease was inhibited by MSC co-transfer. Moreover, MSCs were able to suppress both allogeneic and insulin-specific proliferative responses in vitro. This suppressive effect was associated with the induction of IL10-secreting FOXP3+ T cells.Conclusions/interpretationMSCs prevent autoimmune beta cell destruction and subsequent diabetes by inducing regulatory T cells. MSCs may thus offer a novel cell-based approach for the prevention of autoimmune diabetes and for islet cell transplantation.


Clinical and Experimental Immunology | 2011

Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society.

Roberto Mallone; Stuart I. Mannering; Barbara Brooks-Worrell; I. Durinovic-Belló; Corrado M. Cilio; Florence Susan Wong; Nanette C. Schloot

Autoimmune T cell responses directed against insulin‐producing β cells are central to the pathogenesis of type 1 diabetes (T1D). Detection of such responses is therefore critical to provide novel biomarkers for T1D ‘immune staging’ and to understand the mechanisms underlying the disease. While different T cell assays are being developed for these purposes, it is important to optimize and standardize methods for processing human blood samples for these assays. To this end, we review data relevant to critical parameters in peripheral blood mononuclear cell (PBMC) isolation, (cryo)preservation, distribution and usage for detecting antigen‐specific T cell responses. Based on these data, we propose recommendations on processing blood samples for T cell assays and identify gaps in knowledge that need to be addressed. These recommendations may be relevant not only for the analysis of T cell responses in autoimmune disease, but also in cancer and infectious disease, particularly in the context of clinical trials.


Diabetes | 2011

Evidence That Nasal Insulin Induces Immune Tolerance to Insulin in Adults With Autoimmune Diabetes

Spiros Fourlanos; Christine Perry; Shane A. Gellert; Emanuela Martinuzzi; Roberto Mallone; Jeanne Butler; Peter G. Colman; Leonard C. Harrison

OBJECTIVE Insulin in pancreatic β-cells is a target of autoimmunity in type 1 diabetes. In the NOD mouse model of type 1 diabetes, oral or nasal administration of insulin induces immune tolerance to insulin and protects against autoimmune diabetes. Evidence for tolerance to mucosally administered insulin or other autoantigens is poorly documented in humans. Adults with recent-onset type 1 diabetes in whom the disease process is subacute afford an opportunity to determine whether mucosal insulin induces tolerance to insulin subsequently injected for treatment. RESEARCH DESIGN AND METHODS We randomized 52 adults with recent-onset, noninsulin-requiring type 1 diabetes to nasal insulin or placebo for 12 months. Fasting blood glucose and serum C-peptide, glucagon-stimulated serum C-peptide, and serum antibodies to islet antigens were monitored three times monthly for 24 months. An enhanced ELISpot assay was used to measure the T-cell response to human proinsulin. RESULTS β-Cell function declined by 35% overall, and 23 of 52 participants (44%) progressed to insulin treatment. Metabolic parameters remained similar between nasal insulin and placebo groups, but the insulin antibody response to injected insulin was significantly blunted in a sustained manner in those who had received nasal insulin. In a small cohort, the interferon-γ response of blood T-cells to proinsulin was suppressed after nasal insulin. CONCLUSIONS Although nasal insulin did not retard loss of residual β-cell function in adults with established type 1 diabetes, evidence that it induced immune tolerance to insulin provides a rationale for its application to prevent diabetes in at-risk individuals.


Journal of Autoimmunity | 2015

Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients

Michelle Rosenzwajg; Guillaume Churlaud; Roberto Mallone; Adrien Six; Nicolas Dérian; Wahiba Chaara; Roberta Lorenzon; S. Alice Long; Jane H. Buckner; Georgia Afonso; Hang Phuong Pham; A. Hartemann; Aixin Yu; Alberto Pugliese; Thomas R. Malek; David Klatzmann

Most autoimmune diseases (AID) are linked to an imbalance between autoreactive effector T cells (Teffs) and regulatory T cells (Tregs). While blocking Teffs with immunosuppression has long been the only therapeutic option, activating/expanding Tregs may achieve the same objective without the toxicity of immunosuppression. We showed that low-dose interleukin-2 (ld-IL-2) safely expands/activates Tregs in patients with AID, such HCV-induced vasculitis and Type 1 Diabetes (T1D). Here we analyzed the kinetics and dose-relationship of IL-2 effects on immune responses in T1D patients. Ld-IL-2 therapy induced a dose-dependent increase in CD4(+)Foxp3(+) and CD8(+)Foxp3(+) Treg numbers and proportions, the duration of which was markedly dose-dependent. Tregs expressed enhanced levels of activation markers, including CD25, GITR, CTLA-4 and basal pSTAT5, and retained a 20-fold higher sensitivity to IL-2 than Teff and NK cells. Plasma levels of regulatory cytokines were increased in a dose-dependent manner, while cytokines linked to Teff and Th17 inflammatory cells were mostly unchanged. Global transcriptome analyses showed a dose-dependent decrease in immune response signatures. At the highest dose, Teff responses against beta-cell antigens were suppressed in all 4 patients tested. These results inform of broader changes induced by ld-IL-2 beyond direct effects on Tregs, and relevant for further development of ld-IL-2 for therapy and prevention of T1D, and other autoimmune and inflammatory diseases.


Endocrine Reviews | 2011

Beyond the Hormone: Insulin as an Autoimmune Target in Type 1 Diabetes

Vedran Brezar; Jean-Claude Carel; Christian Boitard; Roberto Mallone

Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.


Journal of Immunology | 2007

Immunization of HLA Class I Transgenic Mice Identifies Autoantigenic Epitopes Eliciting Dominant Responses in Type 1 Diabetes Patients

Philippe Blancou; Roberto Mallone; Emanuela Martinuzzi; Sabine Sévère; Sylvie Pogu; Giulia Novelli; Graziella Bruno; B. Charbonnel; Manuel Dolz; Lucy Chaillous; Peter van Endert; Jean-Marie Bach

Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic β cells. CD8+ T cells have recently been assigned a major role in β cell injury. Consequently, the identification of autoreactive CD8+ T cells in humans remains essential for development of therapeutic strategies and of assays to identify aggressive cells. However, this identification is laborious and limited by quantities of human blood samples available. We propose a rapid and reliable method to identify autoantigen-derived epitopes recognized by human CD8+ T lymphocytes in T1D patients. Human histocompatibility leukocyte Ags-A*0201 (HLA-A*0201) transgenic mice were immunized with plasmids encoding the T1D-associated autoantigens: 65 kDa glutamic acid decarboxylase (GAD) or insulinoma-associated protein 2 (IA-2). Candidate epitopes for T1D were selected from peptide libraries by testing the CD8+ reactivity of vaccinated mice. All of the nine-candidate epitopes (five for GAD and four for IA-2) identified by our experimental approach were specifically recognized by CD8+ T cells from newly diagnosed T1D patients (n = 19) but not from CD8+ T cells of healthy controls (n = 20). Among these, GAD114–123, GAD536–545 and IA-2805–813 were recognized by 53%, 25%, and 42% of T1D patients, respectively.


PLOS ONE | 2011

Antibodies Recognizing Mycobacterium avium paratuberculosis Epitopes Cross-React with the Beta-Cell Antigen ZnT8 in Sardinian Type 1 Diabetic Patients

Speranza Masala; Daniela Paccagnini; Davide Cossu; Vedran Brezar; Adolfo Pacifico; Niyaz Ahmed; Roberto Mallone; Leonardo Antonio Sechi

The environmental factors at play in the pathogenesis of type 1 diabetes (T1D) remain enigmatic. Mycobacterium avium subspecies paratuberculosis (MAP) is transmitted from dairy herds to humans through food contamination. MAP causes an asymptomatic infection that is highly prevalent in Sardinian T1D patients compared with type 2 diabetes (T2D) and healthy controls. Moreover, MAP elicits humoral responses against several mycobacterial proteins. We asked whether antibodies (Abs) against one of these proteins, namely MAP3865c, which displays a sequence homology with the β-cell protein zinc transporter 8 (ZnT8) could be cross-reactive with ZnT8 epitopes. To this end, Ab responses against MAP3865c were analyzed in Sardinian T1D, T2D and healthy subjects using an enzymatic immunoassay. Abs against MAP3865c recognized two immunodominant transmembrane epitopes in 52–65% of T1D patients, but only in 5–7% of T2D and 3–5% of healthy controls. There was a linear correlation between titers of anti-MAP3865c and anti-ZnT8 Abs targeting these two homologous epitopes, and pre-incubation of sera with ZnT8 epitope peptides blocked binding to the corresponding MAP3865c peptides. These results demonstrate that Abs recognizing MAP3865c epitopes cross-react with ZnT8, possibly underlying a molecular mimicry mechanism, which may precipitate T1D in MAP-infected individuals.


Clinical and Experimental Immunology | 2010

Current approaches to measuring human islet-antigen specific T cell function in type 1 diabetes.

Stuart I. Mannering; Florence Susan Wong; I. Durinovic-Belló; B. Brooks-Worrell; Timothy Tree; Corrado M. Cilio; Nanette C. Schloot; Roberto Mallone

Type 1 diabetes (T1D) is an autoimmune disease caused by the T cell‐mediated destruction of the pancreatic insulin‐producing beta cells. Currently there are no widely accepted and standardized assays available to analyse the function of autoreactive T cells involved in T1D. The development of such an assay would greatly aid efforts to understand the pathogenesis of T1D and is also urgently required to guide the development of antigen‐based therapies intended to prevent, or cure, T1D. Here we describe some of the assays used currently to detect autoreactive T cells in human blood and review critically their strengths and weaknesses. The challenges and future prospects for the T cell assays are discussed.


Journal of Immunology | 2008

Equivalent Specificity of Peripheral Blood and Islet-Infiltrating CD8+ T Lymphocytes in Spontaneously Diabetic HLA-A2 Transgenic NOD Mice

Emmanuelle Énée; Emanuela Martinuzzi; Philippe Blancou; Jean-Marie Bach; Roberto Mallone; Peter van Endert

CD8+ T cells play an important role in the initiation of insulitis and in the destructive stage leading to insulin-dependent diabetes mellitus. A string of recent studies has led to the identification of numerous HLA-A2-restricted epitopes derived from pancreatic β cell Ags. It is hoped that assays detecting responses of patient PBMC to such epitopes might be instrumental for early diagnosis of β cell-directed autoimmunity and for monitoring trials of immunointervention. However, it remains unclear whether the results of assays studying PBMC reflect responses of islet-infiltrating lymphocytes, and to what extent they correlate with disease risk and/or activity. We have used female and male humanized NOD mice expressing HLA-A2 in addition to murine MHC class I molecules to study spontaneous responses of islet-infiltrating blood, spleen, and lymph node lymphocytes of various age groups to a panel of 16 epitopes. Twelve of these are restricted by HLA-A2, have previously been shown to be recognized by patient CTL, and have identical sequences in human and murine autoantigens. Using an IFN-γ ELISPOT assay, we find highly similar hierarchies of epitope immunodominance in the different T cell compartments, including peripheral blood and pancreatic islets. Moreover, we demonstrate that most of the epitopes eliciting dominant responses in humans display similar status in the mouse model. These results emphasize the potential of humanized mice as tools for studying spontaneous autoimmune CTL responses, and they provide a strong rationale for the development and use of assays monitoring responses of CD8+ PBMC in human type 1 diabetes.


PLOS ONE | 2011

Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes

Stina Axelsson; Mikael Chéramy; Maria Hjorth; Mikael Pihl; Linda Åkerman; Emanuela Martinuzzi; Roberto Mallone; Johnny Ludvigsson; Rosaura Casas

A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD65. Frequencies of naïve, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD65 autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD65, but not with control antigens, compared with placebo subjects. GAD65-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD65 enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD65-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD65 immunity.

Collaboration


Dive into the Roberto Mallone's collaboration.

Top Co-Authors

Avatar

Christian Boitard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Philippe Blancou

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart O. Roep

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Eddie A. James

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge