Roberto Mariotti
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Mariotti.
Molecular Breeding | 2009
Luciana Baldoni; Nicolò G. M. Cultrera; Roberto Mariotti; Claudia Ricciolini; Sergio Arcioni; Giovanni G. Vendramin; Anna Buonamici; Andrea Porceddu; V. Sarri; Maria A. Ojeda; Isabel Trujillo; Luis Rallo; Angjelina Belaj; Enzo Perri; Amelia Salimonti; Innocenzo Muzzalupo; Alberto Casagrande; O. Lain; Rachele Messina; Raffaele Testolin
Cultivar identification is a primary concern for olive growers, breeders, and scientists. This study was aimed at examining the SSR markers retrieved from the literature and currently used in olive study, in order to select those most effective in characterizing the olive accessions and to make possible the comparison of data obtained by different laboratories. Olive microsatellite profiles were assessed by four independent laboratories, which analyzed 37 pre-selected SSR loci on a set of 21 cultivars. These SSR markers were initially tested for their reproducibility, power of discrimination and number of amplified loci/alleles. Independent segregation was tested for each pair of SSRs in a controlled cross and the allelic error rate was quantified. Some of them were finally selected as the most informative and reliable. Most of the alleles were sequenced and their sizes were determined. Profiles of the reference cultivars and a list of alleles with their sizes obtained by sequencing are reported. Several genetic parameters have been analysed on a larger set of cultivars allowing for a deeper characterization of the selected loci. Results of this study provide a list of recommended markers and protocols for olive genotyping as well as the allelic profile of a set of reference cultivars that would be useful for the establishment of a universal database of olive accessions.
BMC Plant Biology | 2012
Fiammetta Alagna; Roberto Mariotti; Francesco Panara; Silvia Caporali; Stefania Urbani; Gianluca Veneziani; Sonia Esposto; Agnese Taticchi; Adolfo Rosati; Rosa Rao; Gaetano Perrotta; Maurizio Servili; Luciana Baldoni
BackgroundOlive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism.ResultsThe concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development.ConclusionsMetabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data represent the first step towards the functional characterisation of important genes for the determination of olive fruit quality.
BMC Plant Biology | 2010
Roberto Mariotti; Nicolò G. M. Cultrera; Concepcion Muñoz Díez; Luciana Baldoni; Andrea Rubini
BackgroundThe cultivated olive (Olea europaea L.) is the most agriculturally important species of the Oleaceae family. Although many studies have been performed on plastid polymorphisms to evaluate taxonomy, phylogeny and phylogeography of Olea subspecies, only few polymorphic regions discriminating among the agronomically and economically important olive cultivars have been identified. The objective of this study was to sequence the entire plastome of olive and analyze many potential polymorphic regions to develop new inter-cultivar genetic markers.ResultsThe complete plastid genome of the olive cultivar Frantoio was determined by direct sequence analysis using universal and novel PCR primers designed to amplify all overlapping regions. The chloroplast genome of the olive has an organisation and gene order that is conserved among numerous Angiosperm species and do not contain any of the inversions, gene duplications, insertions, inverted repeat expansions and gene/intron losses that have been found in the chloroplast genomes of the genera Jasminum and Menodora, from the same family as Olea.The annotated sequence was used to evaluate the content of coding genes, the extent, and distribution of repeated and long dispersed sequences and the nucleotide composition pattern. These analyses provided essential information for structural, functional and comparative genomic studies in olive plastids. Furthermore, the alignment of the olive plastome sequence to those of other varieties and species identified 30 new organellar polymorphisms within the cultivated olive.ConclusionsIn addition to identifying mutations that may play a functional role in modifying the metabolism and adaptation of olive cultivars, the new chloroplast markers represent a valuable tool to assess the level of olive intercultivar plastome variation for use in population genetic analysis, phylogenesis, cultivar characterisation and DNA food tracking.
PLOS ONE | 2016
Fiammetta Alagna; Marco Cirilli; Giulio Galla; Fabrizio Carbone; Loretta Daddiego; Paolo Facella; Loredana Lopez; Chiara Colao; Roberto Mariotti; Nicolò G. M. Cultrera; Martina Rossi; Gianni Barcaccia; Luciana Baldoni; Rosario Muleo; Gaetano Perrotta
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.
Genetic Resources and Crop Evolution | 2014
Soraya Mousavi; Mehdi Hosseini Mazinani; Kazem Arzani; Abbas Ydollahi; Saverio Pandolfi; Luciana Baldoni; Roberto Mariotti
Unidentified olive plants naturally grow in the Golestan province of Iran, on different soils and under climates spanning from sub-temperate to desert conditions, represented by single trees or groups of few trees. We collected samples from representative sites and analyzed them by simple sequence repeat markers in order to determine their identity and their relationships to prominent Iranian and Mediterranean reference cultivars. Population structure analysis separated these ecotypes from Mediterranean and, surprisingly, from all Iranian cultivars, the parentage test excluded their direct contribution as candidate parents or offspring of cultivars, and they also showed a high level of admixture. Their differentiation from cultivated olives may be attributed to different factors: they could represent wild plants or could derive from natural dissemination of ancestral cultivated trees. Their survival up to now may be due to the fact that most of them are grown on sacred sites such as necropolis. Anyhow, the adaptation to strong environmental stresses, and their fruit size and oil content make the olive Golestan ecotypes a valuable source of genetic variation previously uncharacterized and currently threatened with extinction.
PLOS ONE | 2014
Mehdi Hosseini-Mazinani; Roberto Mariotti; Bahareh Torkzaban; Massoma Sheikh-Hassani; Saeedeh Ataei; Nicolò G. M. Cultrera; Saverio Pandolfi; Luciana Baldoni
Background Olive trees (Olea europaea subsp. europaea var. europaea) naturally grow in areas spanning the Mediterranean basin and towards the East, including the Middle East. In the Iranian plateau, the presence of olives has been documented since very ancient times, though the early history of the crop in this area is shrouded in uncertainty. Methods The varieties presently cultivated in Iran and trees of an unknown cultivation status, surviving under extreme climate and soil conditions, were sampled from different provinces and compared with a set of Mediterranean cultivars. All samples were analyzed using SSR and chloroplast markers to establish the relationships between Iranian olives and Mediterranean varieties, to shed light on the origins of Iranian olives and to verify their contribution to the development of the current global olive variation. Results Iranian cultivars and ecotypes, when analyzed using SSR markers, clustered separately from Mediterranean cultivars and showed a high number of private alleles, on the contrary, they shared the same single chlorotype with the most widespread varieties cultivated in the Mediterranean. Conclusion We hypothesized that Iranian and Mediterranean olive trees may have had a common origin from a unique center in the Near East region, possibly including the western Iranian area. The present pattern of variation may have derived from different environmental conditions, distinct levels and selection criteria, and divergent breeding opportunities found by Mediterranean and Iranian olives.These unexpected findings emphasize the importance of studying the Iranian olive germplasm as a promising but endangered source of variation.
Evolutionary Applications | 2017
Pierre Saumitou-Laprade; Philippe Vernet; Xavier Vekemans; Sylvain Billiard; Sophie Gallina; Laila Essalouh; Ali Mhaïs; Abdelmajid Moukhli; Ahmed El Bakkali; Gianni Barcaccia; Fiammetta Alagna; Roberto Mariotti; Nicolò G. M. Cultrera; Saverio Pandolfi; Martina Rossi; Bouchaib Khadari; Luciana Baldoni
The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self‐incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra‐ and interspecific stigma tests on 89 genotypes representative of species‐wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self‐incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross‐incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.
Frontiers in Plant Science | 2017
Soraya Mousavi; Roberto Mariotti; Luca Regni; Luigi Nasini; Marina Bufacchi; Saverio Pandolfi; Luciana Baldoni; Primo Proietti
Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years’ 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST (Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections, also based on recently developed markers.
Tree Genetics & Genomes | 2016
Roberto Mariotti; Nicolò G. M. Cultrera; Soraya Mousavi; Federica Baglivo; Martina Rossi; Emidio Albertini; Fiammetta Alagna; Fabrizio Carbone; Gaetano Perrotta; Luciana Baldoni
Rapid and effective genotyping is an important goal to discriminate among the numerous olive cultivars and their wild related forms. The largely used di-nucleotide simple sequence repeat (SSR) markers show a high level of polymorphism and have strongly contributed to solve many inconsistencies in varietal identity, but many problems related to difficult discrimination of neighboring alleles and low comparability of data among different labs severely reduce their applicability for large-scale screening. The availability of numerous transcriptome libraries, which were developed from different tissues of several olive varieties, has allowed their intensive screening to search for polynucleotide microsatellite regions with long core repeats, potentially polymorphic among varieties. An accurate screening of all these polymorphisms has allowed to select a set of 25 trinucleotide and one tetranucleotide SSRs, showing a good level of discrimination power with a high allele pattern resolution and repeatability. They were preliminarily tested on a group of cultivated varieties then validated on a wider group of cultivated and wild plants, and related species and subspecies, demonstrating a good transferability within the entire Olea taxon. Furthermore, an in silico functional prediction has allowed to assign each transcribed sequence to their gene functions and biological process categories, highlighting their potential application of these new EST-SSRs as functional markers.
Annals of Botany | 2017
Soraya Mousavi; Roberto Mariotti; Francesca Bagnoli; Lorenzo Costantini; Nicolò G. M. Cultrera; Kazem Arzani; Saverio Pandolfi; Giovanni G. Vendramin; Bahareh Torkzaban; Mehdi Hosseini-Mazinani; Luciana Baldoni
Background and Aims Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction. Methods Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo‐botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution. Key Results The results of the present study demonstrated that: (1) the climatic conditions of the last glacial maximum had an important role on the actual olive distribution, (2) all Iranian olive samples had the same maternal inheritance as Mediterranean cultivars, and (3) the nuclear gene flow from the Mediterranean basin to the Iranian plateau was almost absent, as well as the contribution of subspecies cuspidata to the diversity of Iranian olives. Conclusions Based on this evidence, a new scenario for the origin and distribution of this important fruit crop has been traced. The evaluation of olive trees growing in the eastern part of the Levant highlighted a new perspective on the spread and distribution of olive, suggesting two routes of olive differentiation, one westward, spreading along the Mediterranean basin, and another moving towards the east and reaching the Iranian plateau before its domestication.