Roberto Martínez-Beamonte
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Martínez-Beamonte.
Journal of Biotechnology | 2011
Roberto Martínez-Beamonte; María A. Navarro; Ana M Larraga; Mark Strunk; Cristina Barranquero; Sergio Acín; Mario A. Guzmán; Pablo Iñigo; Jesús Osada
Selection of the most stable reference gene is critical for a reliable interpretation of gene expression data using RT-PCR. In order so, 17 commonly used genes were analyzed in Wistar rat duodenum, jejunum, ileum and liver following a fat gavage and at two time periods. These reference genes were also tested in liver from Zucker (fa/fa) on a long-term dietary trial. Four strategies were used to select the most suitable reference gene for each tissue: ranking according to biological coefficient of variation and further validation by statistical comparison among groups, geNorm, NormFinder and BestKeeper programs. No agreement was observed among these approaches for a particular gene, nor a common gene for all tissues. Furthermore we demonstrated that normalising using an inadequate reference conveyed into false negative and positive results. The selection of genes provided by BestKeeper resulted in more reliable results than the other statistical packages. According to this program, Tbp, Ubc, Hprt and Rn18s were the best reference genes for duodenum, jejunum, ileum and liver, respectively following a fat gavage in Wistar rats and Rn18s for liver in another rat strain on a long-term dietary intervention. Therefore, BestKeeper is highly recommendable to select the most stable gene to be used as internal standard and the selection of a specific reference expression gene requires a validation for each tissue and experimental design.
International Journal of Molecular Sciences | 2013
Roberto Martínez-Beamonte; José Manuel Lou-Bonafonte; María Victoria Martínez-Gracia; Jesús Osada
High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.
Journal of Nutritional Biochemistry | 2014
Sara Oliván; Roberto Martínez-Beamonte; Ana Cristina Calvo; Joaquín C. Surra; Raquel Manzano; Carmen Arnal; Rosario Osta; Jesús Osada
Amyotrophic lateral sclerosis is a neurodegenerative disease associated with mutations in antioxidant enzyme Cu/Zn-superoxide dismutase 1. Albeit there is no treatment for this disease, new insights related to an exacerbated lipid metabolism have been reported. In connection with the hypermetabolic lipid status, the hypothesis whether nature of dietary fat might delay the progression of the disease was tested by using a transgenic mouse that overexpresses the human SOD1G93A variant. For this purpose, SOD1G93A mice were assigned randomly to one of the following three experimental groups: (1) a standard chow diet (control, n=21), (2) a chow diet enriched with 20% (w/w) extra virgin olive oil (EVOO, n=22) and (3) a chow diet containing 20% palm oil (palm, n=20). They received the diets for 8 weeks and the progression of the disease was assessed. On the standard chow diet, average plasma cholesterol levels were lower than those mice receiving the high-fat diets. Mice fed an EVOO diet showed a significant higher survival and better motor performance than control mice. EVOO group mice survived longer and showed better motor performance and larger muscle fiber area than animals receiving palm. Moreover, the EVOO-enriched diet improved the muscle status as shown by expression of myogenic factors (Myod1 and Myog) and autophagy markers (LC3 and Beclin1), as well as diminished endoplasmic reticulum (ER) stress through decreasing Atf6 and Grp78. Our results demonstrate that EVOO may be effective in increasing survival rate, improving motor coordination together with a potential amelioration of ER stress, autophagy and muscle damage.
Journal of Proteomics | 2012
Adela Ramírez-Torres; Sílvia Barceló-Batllori; Roberto Martínez-Beamonte; María A. Navarro; Joaquín C. Surra; Carmen Arnal; Natalia Guillén; Sergio Acín; Jesús Osada
Squalene is an abundant hydrocarbon present in virgin olive oil. Previous studies showed that its administration decreased atherosclerosis and steatosis in male apoE-knock-out mice. To study its effects on microsomal proteins, 1g/kg/day of squalene was administered to those mice. After 10 weeks, hepatic fat content was assessed and protein extracts of microsomal enriched fractions from control and squalene-treated animals were analyzed by 2D-DIGE. Spots exhibiting significant differences were identified by peptide fingerprinting and MSMS analysis. Squalene administration modified the expression of thirty-one proteins involved in different metabolic functions and increased the levels of those involved in vesicle transport, protein folding and redox status. Only mRNA levels of 9 genes (Arg1, Atp5b, Cat, Hyou1, Nipsnap1, Pcca, Pcx, Pyroxd2, and Txndc5) paralleled these findings. No such mRNA changes were observed in wild-type mice receiving squalene. Thioredoxin domain-containing protein 5 (TXNDC5) protein and mRNA levels were significantly associated with hepatic fat content in apoE-ko mice. These results suggest that squalene action may be executed through a complex regulation of microsomal proteins, both at the mRNA and post-transcriptional levels and the presence of apoE may change the outcome. Txndc5 reflects the anti-steatotic properties of squalene and the sensitivity to lipid accumulation.
PLOS ONE | 2013
Roberto Martínez-Beamonte; María A. Navarro; Sergio Acín; Natalia Guillén; Cristina Barranquero; Carmen Arnal; Joaquín C. Surra; Jesús Osada
Background and Aims The present study was designed to verify the influence of acute fat loading on high density lipoprotein (HDL) composition, and the involvement of liver and different segments of small intestine in the changes observed. Methods and Results To address these issues, rats were administered a bolus of 5-ml of extra-virgin olive oil and sacrificed 4 and 8 hours after feeding. In these animals, lipoproteins were analyzed and gene expressions of apolipoprotein and HDL enzymes were assessed in duodenum, jejunum, ileum and liver. Using this experimental design, total plasma and HDL phospholipids increased at the 8-hour-time-point due to increased sphingomyelin content. An increase in apolipoprotein A4 was also observed mainly in lipid-poor HDL. Increased expression of intestinal Apoa1, Apoa4 and Sgms1 mRNA was accompanied by hepatic decreases in the first two genes in liver. Hepatic expression of Abcg1, Apoa1bp, Apoa2, Apoe, Ptlp, Pon1 and Scarb1 decreased significantly following fat gavage, while no changes were observed for Abca1, Lcat or Pla2g7. Significant associations were also noted for hepatic expression of apolipoproteins and Pon1. Manipulation of postprandial triglycerides using an inhibitor of microsomal transfer protein -CP-346086- or of lipoprotein lipase –tyloxapol- did not influence hepatic expression of Apoa1 or Apoa4 mRNA. Conclusion All these data indicate that dietary fat modifies the phospholipid composition of rat HDL, suggesting a mechanism of down-regulation of hepatic HDL when intestine is the main source of those particles and a coordinated regulation of hepatic components of these lipoproteins at the mRNA level, independently of plasma postprandial triglycerides.
Journal of Nutritional Biochemistry | 2013
Clara Gabás-Rivera; Roberto Martínez-Beamonte; José Ríos; María A. Navarro; Joaquín C. Surra; Carmen Arnal; María Jesús Rodríguez-Yoldi; Jesús Osada
Oleanolic acid is a triterpene widely distributed throughout the plant kingdom and present in virgin olive oil at a concentration of 57 mg/kg. To test the hypotheses that its long-term administration could modify hepatic gene expression in several animal models and that this could be influenced by the presence of APOA1-containing high-density lipoproteins (HDLs), diets including 0.01% oleanolic acid were provided to Apoe- and Apoa1-deficient mice and F344 rats. Hepatic transcriptome was analyzed in Apoe-deficient mice fed long-term semipurified Western diets differing in the oleanolic acid content. Gene expression changes, confirmed by reverse transcriptase quantitative polymerase chain reaction, were sought for their implication in hepatic steatosis. To establish the effect of oleanolic acid independently of diet and animal model, male rats were fed chow diet with or without oleanolic acid, and to test the influence of HDL, Apoa1-deficient mice consuming the latter diet were used. In Apoe-deficient mice, oleanolic acid intake increased hepatic area occupied by lipid droplets with no change in oxidative stress. Bmal1 and the other core component of the circadian clock, Clock, together with Elovl3, Tubb2a and Cldn1 expressions, were significantly increased, while Amy2a5, Usp2, Per3 and Thrsp were significantly decreased in mice receiving the compound. Bmal1 and Cldn1 expressions were positively associated with lipid droplets. Increased Clock and Bmal1 expressions were also observed in rats, but not in Apoa1-deficient mice. The core liver clock components Clock-Bmal1 are a target of oleanolic acid in two animal models independently of the diets provided, and this compound requires APOA1-HDL for its hepatic action.
PLOS ONE | 2014
Clara Gabás-Rivera; Cristina Barranquero; Roberto Martínez-Beamonte; María A. Navarro; Joaquín C. Surra; Jesús Osada
Background and Purpose Squalene, the main hydrocarbon in the unsaponifiable fraction of virgin olive oil, is involved in cholesterol synthesis and it has been reported to own antiatherosclerotic and antiesteatosic effects. However, the squalenes role on lipid plasma parameters and the influence of genotype on this effect need to be addressed. Experimental Approaches Three male mouse models (wild-type, Apoa1- and Apoe- deficient) were fed chow semisynthetic diets enriched in squalene to provide a dose of 1 g/kg during 11 weeks. After this period, their plasma parameters and lipoprotein profiles were analyzed. Key Results Squalene administration at a dose of 1 g/kg showed decreased reactive oxygen species in lipoprotein fractions independently of the animal background and caused an specific increase in high density lipoprotein (HDL)-cholesterol levels, accompanied by an increase in phosphatidylcholine and paraoxonase 1 and no changes in apolipoproteins A1 and A4 in wild-type mice. In these mice, the cholesterol increase was due to its esterified form and associated with an increased hepatic expression of Lcat. These effects were not observed in absence of apolipoprotein A1. The increases in HDL- paraoxonase 1 were translated into decreased plasma malondialdehyde levels depending on the presence of Apolipoprotein A1. Conclusions and Implications Dietary squalene promotes changes in HDL- cholesterol and paraoxonase 1 and decreases reactive oxygen species in lipoproteins and plasma malondialdehyde levels, providing new benefits of its intake that might contribute to explain the properties of virgin olive oil, although the phenotype related to apolipoproteins A1 and E may be particularly relevant.
Journal of Pharmaceutical and Biomedical Analysis | 2018
Isabel Mendiara; Celia Domeño; Cristina Nerín; Aron M. Geurts; Jesús Osada; Roberto Martínez-Beamonte
The potential use of cholesterol esterases was tested to avoid alkaline hydrolysis for cleavage of plasma esterified oxysterols. The enzymatic hydrolysis was optimized by testing two sources of enzyme-Pseudomonas and bovine pancreas, presence of surfactants, incubation time and amount of enzyme. Free forms of 4β-, 7-, 24-, 25- and 27-hydroxycholesterol (HC) as well 7-ketocholesterol (7-KC) were analyzed by liquid chromatography and mass-spectrometry using the deuterated internal standard, 25-HC(d6). Enzymatic hydrolysis was more effective using the Pseudomonas enzyme and in presence of surfactants. Compared to alkaline hydrolysis, it generated a cleaner chromatographic baseline and better recovery of the internal standard. Oxysterols were assayed with detection limits between 7 and 31 pg/mL. Interassay coefficients of variation were lower than 10% and extraction recovery efficiencies, higher than 90%. The procedure was used to characterize plasma levels of Cyp7b1-deficient rat, where it showed increased plasma levels of 7, 24 and 25-HC. Due to the low volume of sample required, it may be used in other animal models, particularly rodents, as well as in pediatric samples where sample amount is always a problem. Thus, the proposed new method offers mild enzymatic processing that greatly facilitates oxysterol determinations to delineate their role in physiopathology.
Molecular Nutrition & Food Research | 2018
José Manuel Lou-Bonafonte; Roberto Martínez-Beamonte; Teresa Sanclemente; Joaquín C. Surra; Luis V. Herrera-Marcos; Javier Sanchez-Marco; Carmen Arnal; Jesús Osada
Squalene is a triterpenic compound found in a large number of plants and other sources with a long tradition of research since it was first reported in 1926. Herein a systematic review of studies concerning squalene published in the last 8 years is presented. These studies have provided further support for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties in vivo and in vitro. Moreover, an antineoplastic effect in nutrigenetic-type treatments, which depends on the failing metabolic pathway of tumors, has also been reported. The bioavailability of squalene in cell cultures, animal models, and in humans has been well established, and further progress has been made in regard to the intracellular transport of this lipophilic molecule. Squalene accumulates in the liver and decreases hepatic cholesterol and triglycerides, with these actions being exerted via a complex network of changes in gene expression at both transcriptional and post-transcriptional levels. Its presence in different biological fluids has also been studied. The combination of squalene with other bioactive compounds has been shown to enhance its pleiotropic properties and might lead to the formulation of functional foods and nutraceuticals to control oxidative stress and, therefore, numerous age-related diseases in human and veterinary medicine.
Frontiers in Bioscience | 2011
Roberto Martínez-Beamonte; María A. Navarro; Natalia Guillén; Sergio Acín; Carmen Arnal; Mario A. Guzmán; Jesús Osada