Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Mazzoli is active.

Publication


Featured researches published by Roberto Mazzoli.


Biotechnology Advances | 2014

Towards lactic acid bacteria-based biorefineries.

Roberto Mazzoli; Francesca Bosco; Itzhak Mizrahi; Edward A. Bayer; Enrica Pessione

Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.


Proteomics | 2009

First evidence of a membrane-bound, tyramine and β-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: A two-dimensional electrophoresis proteomic study

Enrica Pessione; Alessandro Pessione; Cristina Lamberti; Daniel Jean Coïsson; Kathrin Riedel; Roberto Mazzoli; Silvia Bonetta; Leo Eberl; Carlo Giunta

The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of β‐phenylethylamine. Kinetics of tyramine and β‐phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine‐enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to β‐phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2‐DE and MALDI‐TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and β‐phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down‐regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy‐supplying routes. The most interesting finding is a membrane‐bound TDC highly over‐expressed during amine production. This is the first evidence of a true membrane‐bound TDC, longly suspected in bacteria on the basis of the gene sequence.


Electrophoresis | 2001

Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis

Maria Gabriella Giuffrida; Enrica Pessione; Roberto Mazzoli; Giuseppina Dellavalle; Cristina Barello; Amedeo Conti; Carlo Giunta

An Acinetobacter radioresistens strain able to grow on phenol or benzoate as sole carbon and energy source through the β‐ketoadipate pathway was isolated in our laboratories. In previous research, we found a different expression of catechol‐1,2‐dioxygenase isoenzymes (C‐1,2‐O) depending on the growth substrate (phenol or benzoate). In the present study, we used proteome techniques to extend our investigation to other enzymes involved in the aromatic degradation pathway. Since the first nontoxic metabolite in this route is cis,cis‐muconic acid, we focused our attention on the enzymes leading to this compound, chiefly phenol hydroxylase (PH), benzoate dioxygenase (BD), cis‐1,2‐dihydroxycyclohexa‐3,5‐diene‐1‐carboxylate dehydrogenase (D) and C‐1,2‐O. In particular, the A. radioresistens proteome was monitored under different growth substrate conditions, using acetate, benzoate, or phenol as sole carbon source. We compared the protein maps by software image analysis and detected marked differences, suggesting the inducibility of most enzymes. This research also sought to evaluate the conditions allowing the best expression of enzymes to be used in immobilized systems suitable for bioremediation. The experimental data indicate that benzoate is the best carbon source to gain the highest amount of C‐1,2‐O and D, while phenol is the best growth substrate to obtain PH.


Journal of Protein Chemistry | 2000

Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistens.

Fabrizio Briganti; Enrica Pessione; Carlo Giunta; Roberto Mazzoli; Andrea Scozzafava

Two catechol 1,2-dioxygenase (C1,2O) isozymes (IsoA and IsoB) have been purified to homogeneity from a strain of Acinetobacter radioresistens grown on benzoate as the sole carbon and energy source. IsoA and IsoB are both homodimers composed of a single type of subunit with molecular mass of 38,600 and 37,700, Da respectively. In conditions of low ionic strength, IsoA can aggregate as a trimer, in contrast to IsoB, which maintains the dimeric structure, as also supported by the kinetic parameters (Hill numbers). IsoA is identical to the enzyme previously purified from the same bacterium grown on phenol, whereas the IsoB is selectively expressed using benzoate as carbon source. This is the first evidence of the presence of differently expressed C1,2O isozymes in A. radioresistens or more generally of multiple C1,2O isozymes in benzoate-grown Acinetobacter cells. Purified IsoA and IsoB contain approximately 1 iron(III) ion per subunit and both show electronic absorbance and EPR features typical of Fe(III) intradiol dioxygenases. The kinetic properties of the two enzymes such as the specificities toward substituted catechols, the main catalytic parameters, and their behavior in the presence of different kind of inhibitors are, unexpectedly, very similar, in contrast to most of the previously known dioxygenase isozymes.


Proteomics | 2011

Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications.

Cristina Lamberti; Erika Mangiapane; Alessandro Pessione; Roberto Mazzoli; Carlo Giunta; Enrica Pessione

Selenium (Se), Se‐cysteines and selenoproteins have received growing interest in the nutritional field as redox‐balance modulating agents. The aim of this study was to establish the Se‐concentrating and Se‐metabolizing capabilities of the probiotic Lactobacillus reuteri Lb2 BM, for nutraceutical applications. A comparative proteomic approach was employed to study the bacteria grown in a control condition (MRS modified medium) and in a stimulated condition (4.38 mg/L of sodium selenite). The total protein extract was separated into two pI ranges: 4–7 and 6–11; the 25 identified proteins were divided into five functional classes: (i) Se metabolism; (ii) energy metabolism; (iii) stress/adhesion; (iv) cell shape and transport; (v) proteins involved in other functions. All the experimental results indicate that L. reuteri Lb2 BM is able to metabolize Se(IV), incorporating it into selenoproteins, through the action of a selenocysteine lyase, thus enhancing organic Se bioavailability. This involves endo‐ergonic reactions balanced by an increase of substrate‐level phosphorylation, chiefly through lactic fermentation. Nevertheless, when L. reuteri was grown on Se a certain degree of stress was observed, and this has to be taken into account for future applicative purposes. The proteomic approach has proven to be a powerful tool for the metabolic characterization of potential Se‐concentrating probiotics.


Journal of Lipid Research | 2007

Detailed characterization of the lipid A fraction from the nonpathogen Acinetobacter radioresistens strain S13.

Serena Leone; Luisa Sturiale; Enrica Pessione; Roberto Mazzoli; Carlo Giunta; Rosa Lanzetta; Domenico Garozzo; Antonio Molinaro; Michelangelo Parrilli

The genus Acinetobacter is composed of ubiquitous, generally nonpathogen environmental bacteria. Interest concerning these microorganisms has increased during the last 30 years, because some strains, belonging to the so-called A. baumannii-A. calcoaceticus complex, have been implicated in some severe pathological states in debilitated and hospitalized patients. The involvement of lipopolysaccharides (LPSs) as virulence factors in infections by Acinetobacter has been proven, and ongoing studies are aimed toward the complete serological characterization of the O-polysaccharides from LPSs isolated in clinical samples. Conversely, no characterization of the lipid A fraction from Acinetobacter strains has been performed. Here, the detailed structure of the lipid A fraction from A. radioresistens S13 is reported for the first time. A. radioresistens strains have never been isolated in cases of infectious disease. Nevertheless, it is known that the lipid A structure, with minor variations, is highly conserved across the genus; thus, structural details acquired from studies of this nonpathogen strain represent a useful basis for further studies of pathogen species.


Amino Acids | 2010

Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis.

Roberto Mazzoli; Enrica Pessione; Magali Dufour; Valérie Laroute; Maria Gabriella Giuffrida; Carlo Giunta; Muriel Cocaign-Bousquet; Pascal Loubière

GABA is a molecule of increasing nutraceutical interest due to its modulatory activity on the central nervous system and smooth muscle relaxation. Potentially probiotic bacteria can produce it by glutamate decarboxylation, but nothing is known about the physiological modifications occurring at the microbial level during GABA production. In the present investigation, a GABA-producing Lactococcus lactis strain grown in a medium supplemented with or without glutamate was studied using a combined transcriptome/proteome analysis. A tenfold increase in GABA production in the glutamate medium was observed only during the stationary phase and at low pH. About 30 genes and/or proteins were shown to be differentially expressed in glutamate-stimulated conditions as compared to control conditions, and the modulation exerted by glutamate on entire metabolic pathways was highlighted by the complementary nature of transcriptomics and proteomics. Most glutamate-induced responses consisted in under-expression of metabolic pathways, with the exception of glycolysis where either over- or under-expression of specific genes was observed. The energy-producing arginine deiminase pathway, the ATPase, and also some stress proteins were down-regulated, suggesting that glutamate is not only an alternative means to get energy, but also a protective agent against stress for the strain studied.


Frontiers in Microbiology | 2016

The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling

Roberto Mazzoli; Enrica Pessione

Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.


Amino Acids | 2009

Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from an Italian red wine

Roberto Mazzoli; Cristina Lamberti; Jean Daniel Coïsson; Micol Purrotti; M. Arlorio; Maria Gabriella Giuffrida; Carlo Giunta; Enrica Pessione

Wine, like other fermented foods, may contain biogenic amines produced by lactic acid bacteria via amino acids decarboxylation. The most relevant amines from the toxicological standpoint are histamine and tyramine. The complexity of fermented substrates makes it difficult to suggest a priori how variables can modulate amine production. Lactobacillus hilgardii ISE 5211 was isolated from an Italian red wine. Besides producing lactate from malate, this strain is also able to convert arginine to ornithine and histidine to histamine. In the present investigation we studied the influence of malate, arginine and ethanol on histamine accumulation by L. hilgardii ISE 5211. Ethanol concentrations above 13% inhibit both histamine accumulation and bacterial growth; concentrations below 9% affect neither growth nor histamine production. However, an ethanol concentration of 11% allows a low but continuous accumulation of histamine to occur. Arginine also delays histamine accumulation, while malate appears to have no effect on histidine–histamine conversion.


Computational and structural biotechnology journal | 2012

DEVELOPMENT OF MICROORGANISMS FOR CELLULOSE-BIOFUEL CONSOLIDATED BIOPROCESSINGS: METABOLIC ENGINEERS' TRICKS

Roberto Mazzoli

Cellulose waste biomass is the most abundant and attractive substrate for “biorefinery strategies” that are aimed to produce high-value products (e.g. solvents, fuels, building blocks) by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass. Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP). Two paradigms have been applied for such, so far unsuccessful, attempts: a) “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b) “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers. By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen) biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes) benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose) with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

Collaboration


Dive into the Roberto Mazzoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Molinaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge