Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Miatello is active.

Publication


Featured researches published by Roberto Miatello.


Annals of the New York Academy of Sciences | 2012

Flavonoids and metabolic syndrome.

Monica Galleano; Valeria Calabró; Paula D. Prince; María C. Litterio; Barbara Piotrkowski; Marcela Alejandra Vazquez-Prieto; Roberto Miatello; Cesar G. Fraga

Increasing evidence indicates that several mechanisms, associated or not with antioxidant actions, are involved in the effects of flavonoids on health. Flavonoid‐rich beverages, foods, and extracts, as well as pure flavonoids are studied for the prevention and/or amelioration of metabolic syndrome (MS) and MS‐associated diseases. We summarize evidence linking flavonoid consumption with the risk factors defining MS: obesity, hypertriglyceridemia, hypercholesterolemia, hypertension, and insulin resistance. Nevertheless, a number of molecular mechanisms have been identified; the effects of flavonoids modifying major endpoints of MS are still inconclusive. These difficulties are explained by the complex relationships among the risk factors defining MS, the multiple biological targets controlling these risk factors, and the high number of flavonoids (including their metabolites) present in the diet and potentially responsible for the in vivo effects. Consequently, extensive basic and clinical research is warranted to assess the final relevance of flavonoids for MS.


International Journal of Hypertension | 2013

Pathophysiology of vascular remodeling in hypertension

Nicolás Renna; Natalia de las Heras; Roberto Miatello

Vascular remodeling refers to alterations in the structure of resistance vessels contributing to elevated systemic vascular resistance in hypertension. We start with some historical aspects, underscoring the importance of Glagovs contribution. We then move to some basic concepts on the biomechanics of blood vessels and explain the definitions proposed by Mulvany for specific forms of remodeling, especially inward eutrophic and inward hypertrophic. The available evidence for the existence of remodeled resistance vessels in hypertension comes next, with relatively more weight given to human, in comparison with animal data. Mechanisms are discussed. The impact of antihypertensive drug treatment on remodeling is described, again with emphasis on human data. Some details are given on the three mechanisms to date which point to remodeling resistance arteries as an independent predictor of cardiovascular risk in hypertensive patients. We terminate by considering the potential role of remodeling in the pathogenesis of endorgan damage and in the perpetuation of hypertension.


Molecular Aspects of Medicine | 2010

Organosulfur compounds and cardiovascular disease.

Marcela Alejandra Vazquez-Prieto; Roberto Miatello

Epidemiological studies have shown an inverse relationship between consumption of fruits and vegetables and the risk of cardiovascular disease. Phytochemicals are non-nutritional chemical compounds found in small quantities in fruits and vegetables with known health benefits. Among them, organosulfides are present mainly in garlic and onion characterized by their antioxidant and anti-inflammatory properties, and isothiocyanates in cruciferous vegetables have anticarcinogenic effects in experimental models. In this review, we are focusing on the main biological studies regarding the beneficial effect of organosulfur compounds on their protection against cardiovascular disease.


Free Radical Biology and Medicine | 2014

(-)-Epicatechin mitigates high fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress

Ahmed Bettaieb; Marcela A. Vazquez Prieto; Cecilia Rodriguez Lanzi; Roberto Miatello; Fawaz G. Haj; Cesar G. Fraga

We investigated the capacity of dietary (-)-epicatechin (EC) to mitigate insulin resistance through the modulation of redox-regulated mechanisms in a rat model of metabolic syndrome. Adolescent rats were fed a regular chow diet without or with high fructose (HFr; 10% w/v) in drinking water for 8 weeks, and a group of HFr-fed rats was supplemented with EC in the diet. HFr-fed rats developed insulin resistance, which was mitigated by EC supplementation. Accordingly, the activation of components of the insulin signaling cascade (insulin receptor, IRS1, Akt, and ERK1/2) was impaired, whereas negative regulators (PKC, IKK, JNK, and PTP1B) were upregulated in the liver and adipose tissue of HFr rats. These alterations were partially or totally prevented by EC supplementation. In addition, EC inhibited events that contribute to insulin resistance: HFr-associated increased expression and activity of NADPH oxidase, activation of redox-sensitive signals, expression of NF-κB-regulated proinflammatory cytokines and chemokines, and some sub-arms of endoplasmic reticulum stress signaling. Collectively, these findings indicate that EC supplementation can mitigate HFr-induced insulin resistance and are relevant for defining interventions that can prevent/mitigate MetS-associated insulin resistance.


American Journal of Hypertension | 2001

Aortic smooth muscle cell proliferation and endothelial nitric oxide synthase activity in fructose-fed rats.

Roberto Miatello; Norma Risler; Claudia Castro; Susana González; Mariel Rüttler; Montserrat Cruzado

The aim of this study was to evaluate the proliferative behavior of vascular smooth muscle cells in primary culture (pC-SMC) and the endothelial nitric oxide synthase (eNOS) activity in the endothelial lining of the aorta of fructose-fed rats (FFR). This is an experimental model of syndrome X, a cluster of cardiovascular risk factors including hyperinsulinemia, insulin resistance, and hypertension that has been suggested to be of pathophysiologic importance for the development of atherosclerosis. Male Wistar rats were used: Control (n = 12) and FFR (n = 12). After receiving fructose in drinking water (10% w/v) during 8 weeks, biochemical parameters, systolic blood pressure (SBP) and relative heart weight (RHW) were determined. The proliferative effect of 10% fetal calf serum (FCS) was examined in aortic pC-SMC by [3H]thymidine incorporation and by cell counting. Ca2+/calmodulin-dependent NOS activity was estimated in aortic endothelial lining and in heart tissue homogenates by conversion of [3H]arginine into [3H]citrulline. Fructose-fed rats showed hyperinsulinemia (P = .0263), altered glucose tolerance test (P < .001), higher SBP (P < .0001), and RHW (P = .0145), compared to control rats. These animals also showed an increase of 10% FCS-induced [3H]thymidine incorporation (P < .0001) and cell number of aortic pC-SMC (P = .0049) and decreased eNOS activity in both aortic endothelium (P = .0147) and cardiac tissue (P < .0001). These data support the hypothesis that syndrome X is associated to changes in SMC proliferation and endothelial dysfunction, which could be involved in the onset or progression of the atherogenic process.


Journal of Nutrition and Metabolism | 2011

Garlic and Onion Attenuates Vascular Inflammation and Oxidative Stress in Fructose-Fed Rats

Marcela Alejandra Vazquez-Prieto; Cecilia Rodriguez Lanzi; Carina Lembo; Claudio R. Galmarini; Roberto Miatello

This study evaluates the antioxidant and the anti-inflammatory properties of garlic (G) and onion (O) in fructose-fed rats (FFR). Thirty-day-old male Wistar rats were assigned to control (C), F (10% fructose in drinking water), F+T (tempol 1 mM as control antioxidant), F+G, and F+O. Aqueous G and O extracts were administered orally in doses of 150 and 400 mg/kg/d respectively, and along with tempol, were given during the last 8 weeks of a 14-week period. At the end of the study, FFR had developed insulin resistance, aortic NADPH oxidase activity, increased SBP, plasma TBARS and vascular cell adhesion molecule-1 (VCAM-1) expression in mesenteric arteries, and a decrease in heart endothelial nitric oxide synthase (eNOS). Garlic and onion administration to F rats reduced oxidative stress, increased eNOS activity, and also attenuated VCAM-1 expression. These results provide new evidence showing the anti-inflammatory and antioxidant effect of these vegetables.


American Journal of Hypertension | 2002

Effects of enalapril on the vascular wall in an experimental model of syndrome X

Roberto Miatello; Norma Risler; Susana González; Claudia Castro; Mariel Rüttler; Montserrat Cruzado

Evidence links the insulin resistance syndrome with endothelial dysfunction. Previously, we have described a decreased endothelial nitric oxide synthase (eNOS) activity in both aortic endothelium and cardiac tissue, and an increased proliferation of aortic primary cultured vascular smooth muscle cells (pC-VSMCs), obtained from fructose-fed rats (FFR), an experimental model of syndrome X. Because the participation of the renin-angiotensin system (RAS) in this model is still unclear, the present study examined the effect of chronic administration of an angiotensin converting enzyme (ACE) inhibitor enalapril (E) on pC-VSMCs proliferation and eNOS activity in a conduit artery (aorta) and in resistance vessels (mesenteric vascular bed) from fructose-fed rats. Male Wistar rats were used: Control, FFR, Control + E, and FFR + E (n = 8 in each group). After 8 weeks, tissue samples were obtained and 10% fetal calf serum (FCS) proliferative effect was examined in pC-SMCs of aortic and mesenteric arteries by [(3)H]thymidine incorporation. The eNOS activity was estimated in endothelial lining from both origins by conversion of [(3)H]arginine into [(3)H]citrulline. The FFR aortic and mesenteric pC-VSMCs showed a significantly increased 10% FCS-induced [(3)H]thymidine incorporation compared to controls. The FFR aortic and mesenteric endothelium eNOS activity was significantly decreased. Chronic treatment with E abolished the increased proliferation and restored eNOS activity. These data confirm that changes in VSMCs proliferation and endothelial dysfunction at different levels of the vascular system are involved in syndrome X, and that the inhibition of angiotensin II production can revert those changes, suggesting an important role for RAS and possibly kinins, in the physiopathologic mechanism of this model of syndrome X.


Current Vascular Pharmacology | 2004

Mechanisms of Cardiovascular Changes in an Experimental Model of Syndrome X and Pharmacological Intervention on the Renin-Angiotensin- System

Roberto Miatello; Montserrat Cruzado; Norma Risler

Various cardiovascular risk factors and disease states similar to those present in type 2 diabetic patients also seem to be present in non-diabetic individuals. This cluster of risk factors has been called syndrome X, also known as metabolic cardiovascular syndrome or insulin resistance syndrome. Vascular wall components changes, including endothelial dysfunction and vascular smooth muscle cell (VSMC) migration and proliferation, could be involved in the cardiovascular alterations associated with this state. Fructose fed rats (FFR) provide a model of dietary-induced insulin resistance, which has been used to assess the pathophysiological mechanisms of the metabolic and cardiovascular changes associated to the syndrome X. FFR have hyperinsulinemia, insulin resistance (altered glucose tolerance test) and hypertriglyceridemia; they also develop moderate hypertension and cardiac hypertrophy. This has been confirmed in male rats of different strains, such as Wistar and Sprague-Dawley, chronically fed with a 60% fructose-chow or 10% fructose in the drinking water. At different levels of the cardiovascular system, FFR exhibit changes in the nitric oxide generation system and in primary cultured proliferation of VSMC from conduit and resistance arteries. These abnormalities were normalized by long-term treatment with pharmacological agents acting on the renin-angiotensin system (RAS), such as angiotensin converting-enzyme inhibitors or angiotensin-AT(1) receptor antagonists, that also lowered blood pressure to control levels and reversed cardiac hypertrophy. Evidence suggests an important role for the RAS in the pathogenic mechanisms involved in this model of syndrome X. Furthermore, beneficial pharmacological intervention seems to be mediated by AT(2) receptors and kinins.


Molecular Nutrition & Food Research | 2015

Catechin and quercetin attenuate adipose inflammation in fructose‐fed rats and 3T3‐L1 adipocytes

Marcela A. Vazquez Prieto; Ahmed Bettaieb; Cecilia Rodriguez Lanzi; Verónica C. Soto; Diahann J. Perdicaro; Claudio R. Galmarini; Fawaz G. Haj; Roberto Miatello

SCOPE This study evaluated the capacity of dietary catechin (C), quercetin (Q), and the combination of both (CQ), to attenuate adipose inflammation triggered by high fructose (HFr) consumption in rats and by tumor necrosis factor alpha (TNF-α) in 3T3-L1 adipocytes. METHODS AND RESULTS In rats, HFr consumption for 6 wk caused dyslipidemia, insulin resistance, reduced plasma adiponectin, adiposity, and adipose tissue inflammation. Dietary supplementation with 20 mg/kg/day of C, Q, and CQ improved all these parameters. In 3T3-L1 adipocytes, C and Q attenuated TNF-α-induced elevated protein carbonyls, increased proinflammatory cytokine expression (MCP-1, resistin), and decreased adiponectin. The protective effects of C and Q on adipose inflammation are in part associated with their capacity to (i) decrease the activation of the mitogen-activated kinases (MAPKs) JNK and p38; and (ii) prevent the downregulation of PPAR-γ. In summary, C and Q, and to a larger extent the combination of both, attenuated adipose proinflammatory signaling cascades and regulated the balance of molecules that improve (adiponectin) or impair (TNF-α, MCP-1, resistin) insulin sensitivity. CONCLUSION Together, these findings suggest that dietary Q and C may have potential benefits in mitigating MetS-associated adipose inflammation, oxidative stress, and insulin resistance.


Journal of Agricultural and Food Chemistry | 2010

Aqueous garlic extracts prevent oxidative stress and vascular remodeling in an experimental model of metabolic syndrome.

Marcela Alejandra Vazquez-Prieto; Roxana González; Nicolás Renna; Claudio R. Galmarini; Roberto Miatello

The organosulfur profile and the effect on oxidative stress and vascular remodeling in fructose-fed rats (FFR) were evaluated in Fuego INTA and Morado INTA garlic cultivars. Wistar rats were fed either normal rat chow (control) or the same diet plus 10% fructose in drinking water. During the last 6 weeks of a 12 week period of the corresponding diet, a subgroup of control and FFR received an aqueous extract of Fuego INTA and Morado INTA. Fuego INTA showed higher levels of total thiosulfinates, allicin, and pungency than Morado INTA. FFR showed an increase of systolic blood pressure, aortic NAD(P)H oxidase activity, plasma thiobarbituric acid reactive substances, and vascular remodeling that was significantly reduced after both garlic administrations. The beneficial effect was slightly higher when Fuego INTA was administered. Both aqueous garlic extracts prevent oxidative stress and vascular remodeling in rats with metabolic syndrome, suggesting the existence of slight differences among cultivars.

Collaboration


Dive into the Roberto Miatello's collaboration.

Top Co-Authors

Avatar

Nicolás Renna

National University of Cuyo

View shared research outputs
Top Co-Authors

Avatar

Montserrat Cruzado

National University of Cuyo

View shared research outputs
Top Co-Authors

Avatar

Norma Risler

National University of Cuyo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carina Lembo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana González

National University of Cuyo

View shared research outputs
Top Co-Authors

Avatar

Claudia Castro

National University of Cuyo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge