Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Pellicciari is active.

Publication


Featured researches published by Roberto Pellicciari.


Cell Metabolism | 2009

TGR5-mediated bile acid sensing controls glucose homeostasis.

Charles Thomas; Antimo Gioiello; Lilia G. Noriega; Axelle Strehle; Julien Oury; Giovanni Rizzo; Antonio Macchiarulo; Hiroyasu Yamamoto; Chikage Mataki; Mark Pruzanski; Roberto Pellicciari; Johan Auwerx; Kristina Schoonjans

TGR5 is a G protein-coupled receptor expressed in brown adipose tissue and muscle, where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of-function studies in vivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization. Altogether, these data show that the TGR5 signaling pathway is critical in regulating intestinal GLP-1 secretion in vivo, and suggest that pharmacological targeting of TGR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.


Nature Reviews Drug Discovery | 2008

Targeting bile-acid signalling for metabolic diseases

Charles Thomas; Roberto Pellicciari; Mark Pruzanski; Johan Auwerx; Kristina Schoonjans

Bile acids are increasingly being appreciated as complex metabolic integrators and signalling factors and not just as lipid solubilizers and simple regulators of bile-acid homeostasis. It is therefore not surprising that a number of bile-acid-activated signalling pathways have become attractive therapeutic targets for metabolic disorders. Here, we review how the signalling functions of bile acids can be exploited in the development of drugs for obesity, type 2 diabetes, hypertriglyceridaemia and atherosclerosis, as well as other associated chronic diseases such as non-alcoholic steatohepatitis.


Nature Biotechnology | 2012

Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors.

Elisabet Wahlberg; Tobias Karlberg; Ekaterina Kouznetsova; Natalia Markova; Antonio Macchiarulo; Ann-Gerd Thorsell; Ewa Pol; Åsa Frostell; Torun Ekblad; Delal Öncü; Björn Kull; Graeme Michael Robertson; Roberto Pellicciari; Herwig Schüler; Johan Weigelt

Inhibitors of poly-ADP-ribose polymerase (PARP) family proteins are currently in clinical trials as cancer therapeutics, yet the specificity of many of these compounds is unknown. Here we evaluated a series of 185 small-molecule inhibitors, including research reagents and compounds being tested clinically, for the ability to bind to the catalytic domains of 13 of the 17 human PARP family members including the tankyrases, TNKS1 and TNKS2. Many of the best-known inhibitors, including TIQ-A, 6(5H)-phenanthridinone, olaparib, ABT-888 and rucaparib, bound to several PARP family members, suggesting that these molecules lack specificity and have promiscuous inhibitory activity. We also determined X-ray crystal structures for five TNKS2 ligand complexes and four PARP14 ligand complexes. In addition to showing that the majority of PARP inhibitors bind multiple targets, these results provide insight into the design of new inhibitors.


Molecular Cell | 2003

Structural Basis for Bile Acid Binding and Activation of the Nuclear Receptor FXR

Li Zhi Mi; Srikripa Devarakonda; Joel M. Harp; Qing Han; Roberto Pellicciari; Timothy M. Willson; Sepideh Khorasanizadeh; Fraydoon Rastinejad

The nuclear receptor FXR is the sensor of physiological levels of enterohepatic bile acids, the end products of cholesterol catabolism. Here we report crystal structures of the FXR ligand binding domain in complex with coactivator peptide and two different bile acids. An unusual A/B ring juncture, a feature associated with bile acids and no other steroids, provides ligand discrimination and triggers a pi-cation switch that activates FXR. Helix 12, the activation function 2 of the receptor, adopts the agonist conformation and stabilizes coactivator peptide binding. FXR is able to interact simultaneously with two coactivator motifs, providing a mechanism for enhanced binding of coactivators through intermolecular contacts between their LXXLL sequences. These FXR complexes provide direct insights into the design of therapeutic bile acids for treatment of hyperlipidemia and cholestasis.


Journal of Medicinal Chemistry | 2008

Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies.

Hiroyuki Sato; Antonio Macchiarulo; Charles Thomas; Antimo Gioiello; Mizuho Une; Alan F. Hofmann; Régis Saladin; Kristina Schoonjans; Roberto Pellicciari; Johan Auwerx

TGR5, a metabotropic receptor that is G-protein-coupled to the induction of adenylate cyclase, has been recognized as the molecular link connecting bile acids to the control of energy and glucose homeostasis. With the aim of disclosing novel selective modulators of this receptor and at the same time clarifying the molecular basis of TGR5 activation, we report herein the biological screening of a collection of natural occurring bile acids, bile acid derivatives, and some steroid hormones, which has resulted in the discovery of new potent and selective TGR5 ligands. Biological results of the tested collection of compounds were used to extend the structure-activity relationships of TGR5 agonists and to develop a binary classification model of TGR5 activity. This model in particular could unveil some hidden properties shared by the molecular shape of bile acids and steroid hormones that are relevant to TGR5 activation and may hence be used to address the design of novel selective and potent TGR5 agonists.


Cell Metabolism | 2011

TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading

Thijs Willem Hendrik Pols; Mitsunori Nomura; Taoufiq Harach; Giuseppe Lo Sasso; Maaike H. Oosterveer; Charles Thomas; Giovanni Rizzo; Antimo Gioiello; Luciano Adorini; Roberto Pellicciari; Johan Auwerx; Kristina Schoonjans

The G protein-coupled receptor TGR5 has been identified as an important component of the bile acid signaling network, and its activation has been linked to enhanced energy expenditure and improved glycemic control. Here, we demonstrate that activation of TGR5 in macrophages by 6α-ethyl-23(S)-methylcholic acid (6-EMCA, INT-777), a semisynthetic BA, inhibits proinflammatory cytokine production, an effect mediated by TGR5-induced cAMP signaling and subsequent NF-κB inhibition. TGR5 activation attenuated atherosclerosis in Ldlr(-/-)Tgr5(+/+) mice but not in Ldlr(-/-)Tgr5(-/-) double-knockout mice. The inhibition of lesion formation was associated with decreased intraplaque inflammation and less plaque macrophage content. Furthermore, Ldlr(-/-) animals transplanted with Tgr5(-/-) bone marrow did not show an inhibition of atherosclerosis by INT-777, further establishing an important role of leukocytes in INT-777-mediated inhibition of vascular lesion formation. Taken together, these data attribute a significant immune modulating function to TGR5 activation in the prevention of atherosclerosis, an important facet of the metabolic syndrome.


Journal of Medicinal Chemistry | 2009

Discovery of 6α-ethyl-23(S)-methylcholic Acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity.

Roberto Pellicciari; Antimo Gioiello; Antonio Macchiarulo; Charles Thomas; Emiliano Rosatelli; Benedetto Natalini; Roccaldo Sardella; Mark Pruzanski; Aldo Roda; Elisabetta Pastorini; Kristina Schoonjans; Johan Auwerx

In the framework of the design and development of TGR5 agonists, we reported that the introduction of a C(23)(S)-methyl group in the side chain of bile acids such as chenodeoxycholic acid (CDCA) and 6-ethylchenodeoxycholic acid (6-ECDCA, INT-747) affords selectivity for TGR5. Herein we report further lead optimization efforts that have led to the discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a novel potent and selective TGR5 agonist with remarkable in vivo activity.


Neuroscience | 1994

Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities

Raffaella Carpenedo; Alberto Chiarugi; Patrizia Russi; Grazia Lombardi; Vincenzo Carlà; Roberto Pellicciari; Luisa Mattoli; Flavio Moroni

Kynurenate is an endogenous antagonist of the ionotropic glutamate receptors. It is synthesized from kynurenine, a tryptophan metabolite, and a significant increase in its brain concentration could be useful in pathological situations. We attempted to increase its neosynthesis by modifying kynurenine catabolism. Several kynurenine analogues were synthesized and tested as inhibitors of kynurenine hydroxylase (E.C.1.14.13.9) and of kynureninase (E.C.3.7.1.3), the two enzymes which catalyse the conversion of kynurenine to excitotoxin quinolinate. Among these analogues we observed that nicotinylalanine, a compound whose pharmacological properties have previously been reported, had an IC50 of 900 +/- 180 microM as inhibitor of kynurenine hydroxylase and of 800 +/- 120 microM as inhibitor of kynureninase. In the search for more potent molecules we noticed that meta-nitrobenzoylalanine had an IC50 of 0.9 +/- 0.1 microM as inhibitor of kynurenine hydroxylase and of 100 +/- 12 microM as inhibitor of kynureninase. When administered to rats meta-nitrobenzoylalanine (400 mg/kg) significantly increased the concentration of kynurenine (up to 10 times) and kynurenate (up to five times) in the brain. Similar results were obtained in the blood and in the liver. Furthermore meta-nitrobenzoylalanine increased in a dose dependent, long lasting (up to 13 times and up to 4 h) manner the concentration of kynurenate in the hippocampal extracellular fluid, as evaluated with a microdialysis technique. This increase was associated with a decrease in the locomotor activity and with protection from maximal electroshock-induced seizures in rats or from audiogenic seizures in DBA/2 mice. The conclusions drawn from the present study are: (i) meta-nitrobenzoylalanine is a potent inhibitor of kynurenine hydroxylase also affecting kynureninase; (ii) the inhibition of these enzymes causes a significant increase in the brain extracellular concentration of kynurenate; (iii) this increase is associated with sedative and anticonvulsant actions, suggesting a functional antagonism of the excitatory amino acid receptors.


Cell Death & Differentiation | 2001

Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia

Flavio Moroni; Elena Meli; Fiamma Peruginelli; Alberto Chiarugi; Andrea Cozzi; Roberta Picca; Paolo Romagnoli; Roberto Pellicciari; Domenico E. Pellegrini-Giampietro

An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type. Cell Death and Differentiation (2001) 8, 921–932


Molecular Pharmacology | 2006

The Farnesoid X Receptor Promotes Adipocyte Differentiation and Regulates Adipose Cell Function in Vivo

Giovanni Rizzo; Moises Disante; Andrea Mencarelli; Barbara Renga; Antimo Gioiello; Roberto Pellicciari; Stefano Fiorucci

The differentiation of a preadipocyte into a mature adipocyte is a highly regulated process that requires a scripted program of transcriptional events leading to changes in gene expression. Several genes are associated with adipogenesis, including the CAAT/enhancer-binding protein (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) families of transcription factors. In this study, we have investigated the role of the farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, in regulating adipogenesis in a preadipocyte cell line (3T3-L1 cells). Our results show that FXR is expressed in the white adipose tissue of adult mice and in differentiated 3T3-L1 cells but not in undifferentiated preadipocytes. Exposure of 3T3-L1 cells to INT-747 (6-ethyl cheno-deoxycholic acid), a potent and selective FXR ligand, increases preadipocyte differentiation induced by a differentiating mixture containing insulin. Augmentation of differentiating mixture-induced differentiation of 3T3-L1 cells by INT-747 associated with induction of aP2, C/EBPα, and PPARγ2 mRNAs along with other adipocyte-related genes. This effect was reversed by guggulsterone, an FXR antagonist, and partially reverted by GW9662 (2-chloro-5-nitro-N-phenylbenzamide), a selective PPARγ antagonist, indicating that FXR modulates adipocyte-related genes by PPARγ-dependent and -independent pathways. Regulation of adipocyte-related genes by INT-747 was lost in FXR-/- mice, indicating that modulation of these genes by INT-747 requires an intact FXR. In addition, INT-747 enhances both insulin-induced serine phosphorylation of Akt and glucose uptake by 3T3-L1 cells. Taken together, these results suggest that activation of FXR plays a critical role in regulating adipogenesis and insulin signaling.

Collaboration


Dive into the Roberto Pellicciari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antimo Gioiello

Intercept Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Roda

University of Messina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge