Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Perdisci is active.

Publication


Featured researches published by Roberto Perdisci.


Computer Networks | 2009

McPAD: A multiple classifier system for accurate payload-based anomaly detection

Roberto Perdisci; Davide Ariu; Prahlad Fogla; Giorgio Giacinto; Wenke Lee

Anomaly-based network intrusion detection systems (IDS) are valuable tools for the defense-in-depth of computer networks. Unsupervised or unlabeled learning approaches for network anomaly detection have been recently proposed. Such anomaly-based network IDS are able to detect (unknown) zero-day attacks, although much care has to be dedicated to controlling the amount of false positives generated by the detection system. As a matter of fact, it is has been shown that the false positive rate is the true limiting factor for the performance of IDS, and that in order to substantially increase the Bayesian detection rate, P(Intrusion|Alarm), the IDS must have a very low false positive rate (e.g., as low as 10^-^5 or even lower). In this paper we present McPAD (multiple classifier payload-based anomaly detector), a new accurate payload-based anomaly detection system that consists of an ensemble of one-class classifiers. We show that our anomaly detector is very accurate in detecting network attacks that bear some form of shell-code in the malicious payload. This holds true even in the case of polymorphic attacks and for very low false positive rates. Furthermore, we experiment with advanced polymorphic blending attacks and we show that in some cases even in the presence of such sophisticated attacks and for a low false positive rate our IDS still has a relatively high detection rate.


Information Fusion | 2008

Intrusion detection in computer networks by a modular ensemble of one-class classifiers

Giorgio Giacinto; Roberto Perdisci; Mauro Del Rio; Fabio Roli

Since the early days of research on intrusion detection, anomaly-based approaches have been proposed to detect intrusion attempts. Attacks are detected as anomalies when compared to a model of normal (legitimate) events. Anomaly-based approaches typically produce a relatively large number of false alarms compared to signature-based IDS. However, anomaly-based IDS are able to detect never-before-seen attacks. As new types of attacks are generated at an increasing pace and the process of signature generation is slow, it turns out that signature-based IDS can be easily evaded by new attacks. The ability of anomaly-based IDS to detect attacks never observed in the wild has stirred up a renewed interest in anomaly detection. In particular, recent work focused on unsupervised or unlabeled anomaly detection, due to the fact that it is very hard and expensive to obtain a labeled dataset containing only pure normal events. The unlabeled approaches proposed so far for network IDS focused on modeling the normal network traffic considered as a whole. As network traffic related to different protocols or services exhibits different characteristics, this paper proposes an unlabeled Network Anomaly IDS based on a modular Multiple Classifier System (MCS). Each module is designed to model a particular group of similar protocols or network services. The use of a modular MCS allows the designer to choose a different model and decision threshold for different (groups of) network services. This also allows the designer to tune the false alarm rate and detection rate produced by each module to optimize the overall performance of the ensemble. Experimental results on the KDD-Cup 1999 dataset show that the proposed anomaly IDS achieves high attack detection rate and low false alarm rate at the same time.


annual computer security applications conference | 2009

Detecting Malicious Flux Service Networks through Passive Analysis of Recursive DNS Traces

Roberto Perdisci; Igino Corona; David Dagon; Wenke Lee

In this paper we propose a novel, passive approach for detecting and tracking malicious flux service networks. Our detection system is based on passive analysis of recursive DNS (RDNS) traffic traces collected from multiple large networks. Contrary to previous work, our approach is not limited to the analysis of suspicious domain names extracted from spam emails or precompiled domain blacklists. Instead, our approach is able to detect malicious flux service networks in-the-wild, i.e., as they are accessed by users who fall victims of malicious content advertised through blog spam, instant messaging spam, social website spam, etc., beside email spam. We experiment with the RDNS traffic passively collected at two large ISP networks. Overall, our sensors monitored more than 2.5 billion DNS queries per day from millions of distinct source IPs for a period of 45 days. Our experimental results show that the proposed approach is able to accurately detect malicious flux service networks. Furthermore, we show how our passive detection and tracking of malicious flux service networks may benefit spam filtering applications.


Pattern Recognition Letters | 2008

Classification of packed executables for accurate computer virus detection

Roberto Perdisci; Andrea Lanzi; Wenke Lee

Executable packing is the most common technique used by computer virus writers to obfuscate malicious code and evade detection by anti-virus software. Universal unpackers have been proposed that can detect and extract encrypted code from packed executables, therefore potentially revealing hidden viruses that can then be detected by traditional signature-based anti-virus software. However, universal unpackers are computationally expensive and scanning large collections of executables looking for virus infections may take several hours or even days. In this paper we apply pattern recognition techniques for fast detection of packed executables. The objective is to efficiently and accurately distinguish between packed and non-packed executables, so that only executables detected as packed will be sent to an universal unpacker, thus saving a significant amount of processing time. We show that our system achieves very high detection accuracy of packed executables with a low average processing time.


annual computer security applications conference | 2008

McBoost: Boosting Scalability in Malware Collection and Analysis Using Statistical Classification of Executables

Roberto Perdisci; Andrea Lanzi; Wenke Lee

In this work, we propose Malware Collection Booster (McBoost), a fast statistical malware detection tool that is intended to improve the scalability of existing malware collection and analysis approaches. Given a large collection of binaries that may contain both hitherto unknown malware and benign executables, McBoost reduces the overall time of analysis by classifying and filtering out the least suspicious binaries and passing only the most suspicious ones to a detailed binary analysis process for signature extraction.The McBoost framework consists of a classifier specialized in detecting whether an executable is packed or not, a universal unpacker based on dynamic binary analysis, and a classifier specialized in distinguishing between malicious or benign code. We developed a proof-of-concept version of McBoost and evaluated it on 5,586 malware and 2,258 benign programs. McBoost has an accuracy of 87.3%, and an Area Under the ROC curve (AUC) equal to 0.977. Our evaluation also shows that McBoost reduces the overall time of analysis to only a fraction (e.g., 13.4%) of the computation time that would otherwise be required to analyze large sets of mixed malicious and benign executables.


Engineering Applications of Artificial Intelligence | 2006

Alarm clustering for intrusion detection systems in computer networks

Roberto Perdisci; Giorgio Giacinto; Fabio Roli

Until recently, network administrators manually arranged alarms produced by intrusion detection systems (IDS) to attain a high-level description of cyberattacks. As the number of alarms is increasingly growing, automatic tools for alarm clustering have been proposed to provide such a high-level description of the attack scenarios. In addition, it has been shown that effective threat analysis requires the fusion of different sources of information, such as different IDS. This paper proposes a new strategy to perform alarm clustering which produces unified descriptions of attacks from alarms produced by multiple IDS. In order to be effective, the proposed alarm clustering system takes into account two characteristics of IDS: (i) for a given attack, different sensors may produce a number of alarms reporting different attack descriptions; and (ii) a certain attack description may be produced by the IDS in response to different types of attack. Experimental results show that the high-level alarms produced by the alarm clustering module effectively summarize the attacks, drastically reducing the volume of alarms presented to the administrator. In addition, these high-level alarms can be used as the base to perform further higher-level threat analysis.


dependable systems and networks | 2011

Detecting stealthy P2P botnets using statistical traffic fingerprints

Junjie Zhang; Roberto Perdisci; Wenke Lee; Unum Sarfraz; Xiapu Luo

Peer-to-peer (P2P) botnets have recently been adopted by botmasters for their resiliency to take-down efforts. Besides being harder to take down, modern botnets tend to be stealthier in the way they perform malicious activities, making current detection approaches, including [6], ineffective. In this paper, we propose a novel botnet detection system that is able to identify stealthy P2P botnets, even when malicious activities may not be observable. First, our system identifies all hosts that are likely engaged in P2P communications. Then, we derive statistical fingerprints to profile different types of P2P traffic, and we leverage these fingerprints to distinguish between P2P botnet traffic and other legitimate P2P traffic. Unlike previous work, our system is able to detect stealthy P2P botnets even when the underlying compromised hosts are running legitimate P2P applications (e.g., Skype) and the P2P bot software at the same time. Our experimental evaluation based on real-world data shows that the proposed system can achieve high detection accuracy with a low false positive rate.


computer and communications security | 2011

SURF: detecting and measuring search poisoning

Long Lu; Roberto Perdisci; Wenke Lee

Search engine optimization (SEO) techniques are often abused to promote websites among search results. This is a practice known as blackhat SEO. In this paper we tackle a newly emerging and especially aggressive class of blackhat SEO, namely search poisoning. Unlike other blackhat SEO techniques, which typically attempt to promote a websites ranking only under a limited set of search keywords relevant to the websites content, search poisoning techniques disregard any term relevance constraint and are employed to poison popular search keywords with the sole purpose of diverting large numbers of users to short-lived traffic-hungry websites for malicious purposes. To accurately detect search poisoning cases, we designed a novel detection system called SURF. SURF runs as a browser component to extract a number of robust (i.e., difficult to evade) detection features from search-then-visit browsing sessions, and is able to accurately classify malicious search user redirections resulted from user clicking on poisoned search results. Our evaluation on real-world search poisoning instances shows that SURF can achieve a detection rate of 99.1% at a false positive rate of 0.9%. Furthermore, we applied SURF to analyze a large dataset of search-related browsing sessions collected over a period of seven months starting in September 2010. Through this long-term measurement study we were able to reveal new trends and interesting patterns related to a great variety of poisoning cases, thus contributing to a better understanding of the prevalence and gravity of the search poisoning problem.


IEEE Transactions on Information Forensics and Security | 2014

Building a Scalable System for Stealthy P2P-Botnet Detection

Junjie Zhang; Roberto Perdisci; Wenke Lee; Xiapu Luo; Unum Sarfraz

Peer-to-peer (P2P) botnets have recently been adopted by botmasters for their resiliency against take-down efforts. Besides being harder to take down, modern botnets tend to be stealthier in the way they perform malicious activities, making current detection approaches ineffective. In addition, the rapidly growing volume of network traffic calls for high scalability of detection systems. In this paper, we propose a novel scalable botnet detection system capable of detecting stealthy P2P botnets. Our system first identifies all hosts that are likely engaged in P2P communications. It then derives statistical fingerprints to profile P2P traffic and further distinguish between P2P botnet traffic and legitimate P2P traffic. The parallelized computation with bounded complexity makes scalability a built-in feature of our system. Extensive evaluation has demonstrated both high detection accuracy and great scalability of the proposed system.


Computer Networks | 2013

Scalable fine-grained behavioral clustering of HTTP-based malware

Roberto Perdisci; Davide Ariu; Giorgio Giacinto

A large number of todays botnets leverage the HTTP protocol to communicate with their botmasters or perpetrate malicious activities. In this paper, we present a new scalable system for network-level behavioral clustering of HTTP-based malware that aims to efficiently group newly collected malware samples into malware family clusters. The end goal is to obtain malware clusters that can aid the automatic generation of high quality network signatures, which can in turn be used to detect botnet command-and-control (C&C) and other malware-generated communications at the network perimeter. We achieve scalability in our clustering system by simplifying the multi-step clustering process proposed in [31], and by leveraging incremental clustering algorithms that run efficiently on very large datasets. At the same time, we show that scalability is achieved while retaining a good trade-off between detection rate and false positives for the signatures derived from the obtained malware clusters. We implemented a proof-of-concept version of our new scalable malware clustering system and performed experiments with about 65,000 distinct malware samples. Results from our evaluation confirm the effectiveness of the proposed system and show that, compared to [31], our approach can reduce processing times from several hours to a few minutes, and scales well to large datasets containing tens of thousands of distinct malware samples.

Collaboration


Dive into the Roberto Perdisci's collaboration.

Top Co-Authors

Avatar

Wenke Lee

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Manos Antonakakis

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David Dagon

Georgia Tech Research Institute

View shared research outputs
Top Co-Authors

Avatar

Babak Rahbarinia

Auburn University at Montgomery

View shared research outputs
Top Co-Authors

Avatar

Xiapu Luo

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Junjie Zhang

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Yacin Nadji

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge