Roberto Sessa
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Sessa.
Pulmonary circulation | 2013
Roberto Sessa; Akiko Hata
MicroRNAs (miRNAs) are a class of small noncoding RNA which exert post-transcriptional gene regulation activity by targeting messenger RNAs. miRNAs have been found to be involved in various fundamental biological processes and deregulation of miRNAs is known to result in pathological conditions. In this review, we provide an overview of recent discoveries on the role played by this class of molecules in lung development and in pulmonary diseases, such as asthma, cystic fibrosis, chronic obstructive pulmonary disease, and pulmonary artery hypertension. Considering the relevant role of these miRNAs under physiological and pathological conditions, they represent new clinical targets as well as diagnostic and prognostic tools. Therefore, this review pays special attention to recent advances and possible future directions for the use of miRNAs for clinical applications.
Blood | 2013
Giorgio Seano; Giulia Chiaverina; Paolo Armando Gagliardi; Laura di Blasio; Roberto Sessa; Federico Bussolino; Luca Primo
The intrinsic complexity of the process of vessel formation limits the efficacy of cellular assays for elucidation of its molecular and pharmacologic mechanisms. We developed an ex vivo three-dimensional (3D) assay of sprouting angiogenesis with arterial explants from human umbilical cords. In this assay, human arterial rings were embedded in basement membrane extract gel, leading to a network of capillarylike structures upon vascular endothelial growth factor (VEGF) A stimulation. The angiogenic outgrowth consisted of endothelial cells, which actively internalized acetylated-low-density lipoprotein, surrounded by pericytes. Computer-assisted quantification of this vascular network demonstrated considerable sensitivity of this assay to several angiogenic inhibitors, including kinase inhibitors and monoclonal antibodies. We also performed targeted gene knockdown on this model by directly infecting explanted umbilical arteries with lentiviruses carrying short-hairpin RNA. Downregulation of VEGFR2 resulted in a significant reduction of the sprouting capability, demonstrating the relevance of human vascular explants for functional genomics studies. Furthermore, a modification of this assay led to development of a 3D model of tumor-driven angiogenesis, in which angiogenic outgrowth was sustained by spheroids of prostate cancer cells in absence of exogenous growth factors. The human arterial ring assay bridges the gap between in vitro endothelial cell and animal model, and is a powerful system for identification of genes and drugs that regulate human angiogenesis.
Biochimica et Biophysica Acta | 2012
Roberto Sessa; Giorgio Seano; Laura di Blasio; Paolo Armando Gagliardi; Claudio Isella; Enzo Medico; Franco Cotelli; Federico Bussolino; Luca Primo
Blood vessel formation depends on the highly coordinated actions of a variety of angiogenic regulators. Vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1) are both potent and essential proangiogenic factors with complementary roles in vascular development and function. Whereas VEGF is required for the formation of the initial vascular plexus, Ang-1 contributes to the stabilization and maturation of growing blood vessels. Here, we provide evidence of a novel microRNA (miRNA)-dependent molecular mechanism of Ang-1 signalling modulation aimed at stabilizing adult vasculature. MiRNAs are short non-coding RNA molecules that post-trascriptionally regulate gene expression by translational suppression or in some instances by cleavage of the respective mRNA target. Our data indicate that endothelial cells of mature vessels express high levels of miR-126, which primarily targets phosphoinositide-3-kinase regulatory subunit 2 (p85β). Down-regulation of miR-126 and over-expression of p85β in endothelial cells inhibit the biological functions of Ang-1. Additionally, knockdown of miR-126 in zebrafish resulted in vascular remodelling and maturation defects, reminiscent of the Ang-1 loss-of-function phenotype. Our findings suggest that miR-126-mediated phosphoinositide-3-kinase regulation, not only fine-tunes VEGF-signaling, but it strongly enhances the activities of Ang-1 on vessel stabilization and maturation.
Biomacromolecules | 2010
Roberta Cavalli; Agnese Bisazza; Roberto Sessa; Luca Primo; Fabio Fenili; Amedea Manfredi; Elisabetta Ranucci; Paolo Ferruti
In this paper we report on the investigation, as DNA nonviral carriers, of three samples of an amphoteric polyamidoamine bearing 4-aminobutylguanidine deriving units, AGMA5, AGMA10, and AGMA20, characterized by different molecular weights (M(w) 5100, 10100, and 20500, respectively). All samples condensed DNA in spherical, positively charged nanoparticles and protected it against enzymatic degradation. AGMA10 and AGMA20 polyplexes had average diameters lower than 100 nm. AGMA5 polyplexes were larger. All polyplexes showed negligible cytotoxicity and were internalized in cells. AGMA10 and AGMA20 performed differently from AGMA5 as nucleic acid carriers in vitro. AGMA10 and AGMA20 effectively promoted transfection, whereas AGMA5 was ineffective. FITC-labeled AGMA10 was prepared and the intracellular trafficking of its DNA polyplex was studied. DNA/AGMA10 polyplex was largely localized inside the nucleus, while AGMA10 concentrated in the perinuclear region. DNA/AGMA10 polyplex intravenously administered to mice promoted gene expression in liver but not in other organs without detectable toxic side effects.
Cancer Research | 2010
Luca Primo; Giorgio Seano; Cristina Roca; Federica Maione; Paolo Armando Gagliardi; Roberto Sessa; Marianna Martinelli; Enrico Giraudo; Laura di Blasio; Federico Bussolino
The integrin alpha6 subunit is part of the alpha6beta1 and alpha6beta4 integrin complexes, which are known to be receptors for laminins and to mediate several biological activities such as embryogenesis, organogenesis, and invasion of carcinoma cells. However, the precise role of alpha6 integrin in angiogenesis has not yet been addressed. We observed that both vascular endothelial growth factor-A and fibroblast growth factor-2 strongly upregulate alpha6 integrin in human endothelial cells. Moreover, alpha6 integrin was positively modulated in angiogenic vessels in pancreatic neuroendocrine carcinoma. In this transgenic mouse model of spontaneous tumorigenesis, alpha6 integrin expression increased in the angiogenic stage, while being expressed at low levels in normal and hyperplastic tissue. We studied the functional role of alpha6 integrin during angiogenesis by lentivirus-mediated gene silencing and blocking antibody. Cell migration and morphogenesis on basement membrane extracts, a laminin-rich matrix, was reduced in endothelial cells expressing low levels of alpha6 integrin. However, we did not observe any differences in collagen matrices. Similar results were obtained in the aortic ring angiogenesis assay. alpha6 integrin was required for vessel sprouting on basement membrane gels but not on collagen gels, as shown by stably silencing this integrin in the murine aorta. Finally, a neutralizing anti-alpha6 integrin antibody inhibited in vivo angiogenesis in chicken chorioallantoic membrane and transgenic tumor mouse model. In summary, we showed that the alpha6 integrin participated in vascular endothelial growth factor-A and fibroblast growth factor-2-driven angiogenesis in vitro and in vivo, suggesting that it might be an attractive target for therapeutic approaches in angiogenesis-dependent diseases such as tumor growth.
The EMBO Journal | 2013
Jonathan Chang; Brandi N. Davis-Dusenbery; Risa Kashima; Xuan Jiang; Nisha Marathe; Roberto Sessa; Justin Louie; Wei Gu; Giorgio Lagna; Akiko Hata
It is widely accepted that different forms of stress activate a common target, p53, yet different outcomes are triggered in a stress‐specific manner. For example, activation of p53 by genotoxic agents, such as camptothecin (CPT), triggers apoptosis, while non‐genotoxic activation of p53 by Nutlin‐3 (Nut3) leads to cell‐cycle arrest without significant apoptosis. Such stimulus‐specific responses are attributed to differential transcriptional activation of various promoters by p53. In this study, we demonstrate that CPT, but not Nut3, induces miR‐203, which downregulates anti‐apoptotic bcl‐w and promotes cell death in a p53‐dependent manner. We find that acetylation of K120 in the DNA‐binding domain of p53 augments its association with the Drosha microprocessor and promotes nuclear primary miRNA processing. Knockdown of human orthologue of Males absent On the First (hMOF), the acetyltransferase that targets K120 in p53, abolishes induction of miR‐203 and cell death mediated by CPT. Thus, this study reveals that p53 acetylation at K120 plays a critical role in the regulation of the Drosha microprocessor and that post‐transcriptional regulation of gene expression by p53 via miRNAs plays a role in determining stress‐specific cellular outcomes.
Journal of Cell Biology | 2014
Paolo Armando Gagliardi; Laura di Blasio; Alberto Puliafito; Giorgio Seano; Roberto Sessa; Federica Chianale; Thomas Leung; Federico Bussolino; Luca Primo
MRCKα is activated by PDK1 through a PIP3-dependent, kinase-independent mechanism that drives the relocation of both proteins to lamellipodia and regulates lamellipodial retraction and directional migration.
Investigative Ophthalmology & Visual Science | 2014
Don Yuen; Sammy Grimaldo; Roberto Sessa; Tatiana Ecoiffier; Tan Truong; Eric J. Huang; Michael Bernas; Sarah Daley; Marlys H. Witte; Lu Chen
PURPOSE Lymphatic research has progressed rapidly in recent years. Lymphatic dysfunction has been found in myriad disorders from cancer metastasis to transplant rejection; however, effective treatment for lymphatic disorders is still limited. This study investigates the role of angiopoietin-2 (Ang-2) in corneal inflammatory lymphangiogenesis (LG) in vivo and in lymphatic endothelial cell (LEC) functions in vitro. METHODS Standard suture placement model was used to study Ang-2 expression in inflamed cornea, and corneal LG and hemangiogenesis (HG) responses in Ang-2 knockout mice. Moreover, human LEC culture system was used to examine the effect of Ang-2 gene knockdown on LEC functions using small interfering RNAs (siRNAs). The effect of siRNA treatment on corneal LG was also assessed in vivo. RESULTS Angiopoietin-2 was expressed on lymphatic vessels and macrophages in inflamed cornea. While corneal LG response was abolished in Ang-2 knockout mice, the HG response was also significantly suppressed with disorganized patterning. Moreover, anti-Ang-2 treatment inhibited LEC proliferation and capillary tube formation in vitro and corneal LG in vivo. CONCLUSIONS Angiopoietin-2 is critically involved in lymphatic processes in vivo and in vitro. Further investigation of the Ang-2 pathway may provide novel insights and therapeutic strategies for lymphatic-related disorders, which occur both inside and outside the eye.
Journal of Cell Science | 2015
Laura di Blasio; Paolo Armando Gagliardi; Alberto Puliafito; Roberto Sessa; Giorgio Seano; Federico Bussolino; Luca Primo
ABSTRACT Non-amoeboid cell migration is characterised by dynamic competition among multiple protrusions to establish new adhesion sites at the cells leading edge. However, the mechanisms that regulate the decision to disassemble or to grow nascent adhesions are not fully understood. Here we show that, in endothelial cells, 3-phosphoinositide-dependent protein kinase 1 (PDK1) promotes focal adhesion (FA) turnover by controlling endocytosis of integrin &agr;v&bgr;3 in a PI3K-dependent manner. We demonstrate that PDK1 binds and phosphorylates integrin &agr;v&bgr;3. Downregulation of PDK1 increases FA size and slows down their disassembly. This process requires both PDK1 kinase activity and PI3K activation but does not involve Akt. Moreover, PDK1 silencing stabilises FA in membrane protrusions decreasing migration of endothelial cells on vitronectin. These results indicate that modulation of integrin endocytosis by PDK1 hampers endothelial cell adhesion and migration on extracellular matrix, thus unveiling a novel role for this kinase.
Investigative Ophthalmology & Visual Science | 2017
Liwei Zhang; Guangyu Li; Roberto Sessa; Gyeong Jin Kang; Meng Shi; Shaokui Ge; Anna Jiang Gong; Ying Wen; Sudhakar Chintharlapalli; Lu Chen
Purpose Corneal transplantation remains the last hope for vision restoration, and lymphangiogenesis (LG) is a primary mediator of transplant rejection. This study was to investigate the specific role of angiopoietin-2 (Ang-2) in transplantation-associated LG and graft rejection. Methods Orthotopic corneal transplantation was performed between fully mismatched C57BL/6 (donor) and BALB/c (recipient) mice to assess the effects of Ang-2 blockade via neutralizing antibody. Grafts were evaluated in vivo by ophthalmic slit-lamp biomicroscopy and anterior segment optical coherence tomography (OCT) up to 8 weeks after surgery. Additionally, whole-mount corneas were analyzed for lymphatic and blood vessels and macrophages by immunofluorescent microscopy, and draining lymph nodes were assessed for donor-derived cells by flow cytometry. Results Anti-Ang-2 treatment significantly suppressed LG and graft rejection. In this study, we achieved 75% suppression of LG and 80% graft survival. Our approach also inhibited donor-derived cell trafficking to draining lymph nodes and affected macrophage morphologic phenotypes in the grafted corneas. Additionally, Ang-2 blockade also reduced central corneal thickening, a parameter strongly associated with graft rejection. Conclusions Ang-2 is critically involved in corneal transplant rejection and anti-Ang-2 treatment significantly improves the outcomes of corneal grafts. Moreover, we have shown that anterior segment OCT offers a new tool to monitor murine corneal grafts in vivo. This study not only reveals new mechanisms for transplant rejection, but also offers a novel strategy to treat it.