Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Vilela Veloso is active.

Publication


Featured researches published by Roberto Vilela Veloso.


Journal of Nutritional Biochemistry | 2008

Soybean diet improves insulin secretion through activation of cAMP/PKA pathway in rats.

Roberto Vilela Veloso; Márcia Q. Latorraca; Vanessa Cristina Arantes; Marise Auxiliadora de Barros Reis; Fabiano Ferreira; Antonio C. Boschero; Everardo M. Carneiro

Maternal malnutrition leads to permanent alterations in insulin secretion of offspring and the soybean diet contributes to improve insulin release. At least a soy component, genistein, seems to increase the insulin secretion by activating the cAMP/PKA and PLC/PKC pathways. Here, we investigated the effect of the soybean diet on the expression of PKAalpha and PKCalpha, and insulin secretion in response to glucose and activators of adenylate cyclase and PKC in adult pancreatic rat islets. Rats from mothers fed with 17% or 6% protein (casein) during pregnancy and lactation were maintained with 17% casein (CC and CR groups) or soybean (SC and SR groups) diet until 90 days of life. The soybean diet improved the insulin response to a physiological concentration of glucose in control islets, but only in the presence of supra-physiological concentrations of glucose in islets from CR and SR groups. PMA also improved the insulin response in islets of SC and SR groups. The expression of PKCalpha was similar in all groups. Forskolin increased the insulin secretion; however, the magnitude of the increment was lower in islets from CR and SR groups than in control animals and in those from rats maintained with soybean diet than in rats fed with casein diet. The PKAalpha expression was similar between SR and CR groups and lower in SC than in CC islets. Thus, soybean diet improved the secretory pattern of beta cells, at least in part, by activating the cAMP/PKA-signaling cascade.


International Scholarly Research Notices | 2011

Low-Protein Diet during Lactation and Maternal Metabolism in Rats

Vera L. Moretto; Marcia O. Ballen; Talita S. S. Gonçalves; Nair Honda Kawashita; Luiz F. Stoppiglia; Roberto Vilela Veloso; Márcia Q. Latorraca; Maria Salete Ferreira Martins; Maria Helena Gaíva Gomes-da-Silva

Some metabolic alterations were evaluated in Wistar rats which received control or low-protein (17%; 6%) diets, from the pregnancy until the end of lactation: control non-lactating (CNL), lactating (CL), low-protein non-lactating (LPNL) and lactating (LPL) groups. Despite the increased food intake by LPL dams, both LP groups reduced protein intake and final body mass was lower in LPL. Higher serum glucose occurred in both LP groups. Lactation induced lower insulin and glucagon levels, but these were reduced by LP diet. Prolactin levels rose in lactating, but were impaired in LPL, followed by losses of mammary gland (MAG) mass and, a fall in serum leptin in lactating dams. Lipid content also reduced in MAG and gonadal white adipose tissue of lactating and, in LPL, contributed to a decreased daily milk production, and consequent impairment of body mass gain by LPL pups. Liver mass, lipid content and ATP-citrate enzyme activity were increased by lactation, but malic enzyme and lipid: glycogen ratio elevated only in LPL. Conclusion. LP diet reduced the development of MAG and prolactin secretion which compromised milk production and pups growth. Moreover, this diet enhanced the store of lipid to glycogen ratio and suggests a higher risk of fatty liver development.


Nutrition | 2010

Soybean diet alters the insulin-signaling pathway in the liver of rats recovering from early-life malnutrition.

Naoel H. Feres; Silvia Regina de Lima Reis; Roberto Vilela Veloso; Vanessa Cristina Arantes; Letícia Martins Ignácio de Souza; Everardo M. Carneiro; Antonio C. Boschero; Marise Auxiliadora de Barros Reis; Márcia Q. Latorraca

OBJECTIVE We investigated if alterations in the insulin-signaling pathway could contribute to reduced hepatic glycogen levels in adult rats subjected to a protein deficiency during intrauterine life and lactation and reared through to recovery on a soybean diet. METHODS Rats from mothers fed with 17% or 6% protein (casein) during pregnancy and lactation were maintained with a 17% casein diet (offspring born to and suckled by mothers fed a control diet and subsequently fed the same diet after weaning [CC group] and offspring born to and suckled by mothers fed a control diet and subsequently fed a soybean flour diet with 17% protein after weaning [CS group]), a soybean diet (offspring of mothers fed a low-protein diet and a control diet after weaning [LC group] and offspring of mothers fed a low-protein diet and fed a soybean flour diet containing 17% protein after weaning [LS group]), or a 6% casein diet (offspring of mothers fed a low-protein diet and subsequently fed the same diet after weaning [LL group]) from weaning until 90 d of life. RESULTS A soybean diet did not modify basal serum glucose and glucagon concentrations, but raised basal serum insulin and consequently increased the serum insulin/glucose ratio. Insulin receptor and insulin receptor substrate-1 levels were lower in rats fed a soybean diet compared with those maintained with a casein diet. In the LS group, the p85 levels were higher than in the LC group, whereas in CS rats its expression was lower than in CC rats. The expression of p110 was lower in the CS group compared with the CC group and similar in the LS and LC groups. Insulin receptor substrate-1 phosphorylation was similar in the LS, LC, and CS groups and lower compared with the CC group. The insulin receptor substrate-1-p85/phosphatidylinositol 3-kinase association was lower in LS than in LC rats and in CS than in CC rats. Akt phosphorylation was lower in the CS and LS groups than in the CC and LC groups. CONCLUSION Adult rats maintained with a soybean diet exhibited insulin resistance due, at least in part, to alterations in the early steps of the insulin signal transduction pathway.


British Journal of Nutrition | 2007

Serum leptin and insulin levels in lactating protein-restricted rats: implications for energy balance

Cristine L. P. Ferreira; G. M. Macêdo; Márcia Q. Latorraca; Vanessa Cristina Arantes; Roberto Vilela Veloso; Everardo M. Carneiro; Antonio C. Boschero; Claudia Maria Oller do Nascimento; M. H. Gaíva

The present study analysed the effect of protein restriction on serum insulin and leptin levels and their relationship with energy balance during lactation. Four groups of rats received isocaloric diets containing 170 g protein/kg or 60 g protein/kg from pregnancy until the 14th day of lactation: control non-lactating, control lactating (both fed a control diet), low-protein non-lactating and low-protein lactating. Energy intake, body composition, energy balance, serum insulin and leptin concentrations and the relationship between these hormones and several factors related to obesity were analysed. Low-protein-intake lactating rats exhibited hypoinsulinaemia, hyperleptinaemia, hypophagia and decreased energy expenditure compared with control lactating rats. The protein level in the carcasses was lower in the low-protein lactating group than in the control lactating group, resulting in a higher fat content in the first group compared with the latter. Body fat correlated inversely with serum insulin and positively with serum leptin level. There was a significant negative correlation between serum leptin and energy intake, and a positive relationship between energy intake and serum insulin level in lactating rats and in the combined data from both groups. Energy expenditure was correlated positively with serum insulin and negatively with serum leptin in lactating rats and when data from control non-lactating and lactating rats were pooled. Lactating rats submitted to protein restriction, compared with lactating control rats, showed that maternal reserves were preserved owing to less severe negative energy balance. This metabolic adaptation was obtained, at least in part, by hypoinsulinaemia that resulted in increased insulin sensitivity favouring enhanced fat deposition, hyperleptinaemia and hypophagia.


Nutrition & Metabolism | 2009

Effect of nutritional recovery with soybean flour diet on body composition, energy balance and serum leptin concentration in adult rats.

Loanda Maria Gomes Cheim; Elisângela de Arruda Oliveira; Vanessa Cristina Arantes; Roberto Vilela Veloso; Marise Auxiliadora de Barros Reis; Maria Helena Gaíva Gomes-da-Silva; Everardo Magalhães Carneiro; Antonio C. Boschero; Márcia Q. Latorraca

BackgroundMalnutrition in early life is associated with obesity in adulthood and soybean products may have a beneficial effect on its prevention and treatment. This study evaluated body composition, serum leptin and energy balance in adult rats subjected to protein restriction during the intrauterine stage and lactation and recovering on a soybean flour diet.MethodsFive groups of the Wistar strain of albino rats were used: CC, offspring born to and suckled by mothers fed a control diet and fed the same diet after weaning; CS, offspring born to and suckled by mothers fed a control diet and fed a soybean diet with 17% protein after weaning; LL, offspring of mothers fed a low protein diet and fed the same diet after weaning; LC, offspring of mothers fed a low protein diet, but fed a control diet after weaning; LS, offspring of mothers fed a low protein diet, but fed a soybean diet with 17% protein after weaning. Food intake, body, perirenal and retroperitoneal adipose tissue were measured in grams. Leptin was quantified using the Enzyme Linked Immuno Sorbent Assay (ELISA) and insulin by radioimmunoassay (RIA). Carcass composition was determined by chemical methods and energy expenditure was calculated by the difference between energy intake and carcass energy gain. Data were tested by analysis of variance (ANOVA).ResultsThe LC and LS groups had higher energetic intake concerning body weight, lower energy expenditure, proportion of fat carcass and fat pads than CC and CS groups. The LS group showed reduced body weight gain and lower energy efficiency, which was reflected in less energy gain as protein and the proportion of carcass protein, and lower energy gain as lipid than in the LC groups, although both groups had eaten the same amount of diet and showed equal energy expenditure. Serum leptin did not differ among groups and was unrelated to food or energy intake and energy expenditure. Serum insulin was higher in the LS than in the LC group.ConclusionProtein restriction during intrauterine life and lactation periods did not provoke obesity in adulthood. Nutritional recovery with soybean diet decreased the body weight at the expense of lower energy efficiency with repercussion on lean mass.


Brazilian Journal of Medical and Biological Research | 2008

Correlation of serum leptin and insulin levels of pregnant protein-restricted rats with predictive obesity variables

Glaucia da S. Macêdo; Cristine L. P. Ferreira; A. Menegaz; Vanessa Cristina Arantes; Roberto Vilela Veloso; Everardo M. Carneiro; Antonio C. Boschero; C.M.P. Oller do Nascimento; Márcia Q. Latorraca; Maria Helena Gaíva Gomes-da-Silva

During pregnancy and protein restriction, changes in serum insulin and leptin levels, food intake and several metabolic parameters normally result in enhanced adiposity. We evaluated serum leptin and insulin levels and their correlations with some predictive obesity variables in Wistar rats (90 days), up to the 14th day of pregnancy: control non-pregnant (N = 5) and pregnant (N = 7) groups (control diet: 17% protein), and low-protein non-pregnant (N = 5) and pregnant (N = 6) groups (low-protein diet: 6%). Independent of the protein content of the diet, pregnancy increased total (F1,19 = 22.28, P < 0.001) and relative (F1,19 = 5.57, P < 0.03) food intake, the variation of weight (F1,19 = 49.79, P < 0.000) and final body weight (F1,19 = 19.52, P < 0.001), but glycemia (F1,19 = 9.02, P = 0.01) and the relative weight of gonadal adipose tissue (F1,19 = 17.11, P < 0.001) were decreased. Pregnancy (F1,19 = 18.13, P < 0.001) and low-protein diet (F1,19 = 20.35, P < 0.001) increased the absolute weight of brown adipose tissue. However, the relative weight of this tissue was increased only by protein restriction (F1,19 = 15.20, P < 0.001) and the relative lipid in carcass was decreased in low-protein groups (F1,19 = 4.34, P = 0.05). Serum insulin and leptin levels were similar among groups and did not correlate with food intake. However, there was a positive relationship between serum insulin levels and carcass fat depots in low-protein groups (r = 0.37, P < 0.05), while in pregnancy serum leptin correlated with weight of gonadal (r = 0.39, P < 0.02) and retroperitoneal (r = 0.41, P < 0.01) adipose tissues. Unexpectedly, protein restriction during 14 days of pregnancy did not alter the serum profile of adiposity signals and their effects on food intake and adiposity, probably due to the short term of exposure to low-protein diet.


Mediators of Inflammation | 2015

Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation

Silvia Regina de Lima Reis; Naoel H. Feres; Letícia M. Ignacio-Souza; Roberto Vilela Veloso; Vanessa Cristina Arantes; Nair Honda Kawashita; Edson Moleta Colodel; Bárbara Laet Botosso; Marise Auxiliadora de Barros Reis; Márcia Q. Latorraca

We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation.


British Journal of Nutrition | 2013

Protein restriction in early life is associated with changes in insulin sensitivity and pancreatic β-cell function during pregnancy.

Letícia M. Ignacio-Souza; Silvia Regina de Lima Reis; Vanessa Cristina Arantes; Bárbara Laet Botosso; Roberto Vilela Veloso; Fabiano Ferreira; Antonio C. Boschero; Everardo M. Carneiro; Marise Auxiliadora de Barros Reis; Márcia Q. Latorraca

Malnutrition in early life impairs glucose-stimulated insulin secretion in adulthood. Conversely, pregnancy is associated with a significant increase in glucose-stimulated insulin secretion under conditions of normoglycaemia. A failure in β-cell adaptive changes may contribute to the onset of diabetes. Thus, glucose homeostasis and β-cell function were evaluated in control-fed pregnant (CP) and non-pregnant (CNP) or protein-restricted pregnant (LPP) and non-pregnant (LPNP) rats, from fetal to adult life, and in protein-restricted rats that were recovered after weaning (RP and RNP). The typical insulin resistance of pregnancy was not observed in the RP rats, nor did pregnancy increase the insulin content/islet in the LPP group. The glucose dose-response curves from pregnant rats were shifted to the left in relation to the non-pregnant rats, except in the recovered group. Glucose utilisation but not oxidation in islets from the RP and LPP groups was reduced at a concentration of 8.3 mm-glucose compared with islets from the CP group. Cyclic AMP content and the potentiation of glucose-stimulated insulin secretion by isobutylmethylxanthine at a concentration of 2.8 mm-glucose indicated increased adenylyl cyclase 3 activity but reduced protein kinase A-α activity in islets from the RP and LPP rats. Protein kinase C (PKC)-α but not phospholipase C (PLC)-β1 expression was reduced in islets from the RP group. Phorbol-12-myristate 13-acetate produced a less potent stimulation of glucose-stimulated insulin secretion in the RP group. Thus, the alterations exhibited by islets from the LPP group appeared to be due to reduced islet mass and/or insulin biosynthesis. In the RP group the loss of the adaptive capacity apparently resulted from uncoupling between glucose metabolism and the amplifying signals of the secretory process, as well as a severe attenuation of the PLC/PKC pathway.


International Journal of Food Sciences and Nutrition | 2014

Nutritional recovery with okara diet prevented hypercholesterolemia, hepatic steatosis and glucose intolerance

Simone Ferreira Lemes; Faena Moura de Lima; Ana Paula Carli de Almeida; Albina de Fátima Silva Ramalho; Silvia Regina de Lima Reis; Letícia Fonseca Michelotto; Jayme Amaya-Farfán; Everardo M. Carneiro; Antonio C. Boschero; Márcia Q. Latorraca; Roberto Vilela Veloso

Abstract We assessed the biological value of an okara diet and its effects on the hormonal and metabolic profile of rats submitted to protein restriction during intra-uterine life and lactation and recovered after weaning. Male rats from mothers fed either 17% or 6% protein during pregnancy and lactation were maintained on 17% casein (CC, LC), 17% okara (CO, LO) or 6% casein (LL) diets over 60 d. The nutritional quality of the okara protein was similar to that of casein. The okara diet was effective in the nutritional recovery of rats in growing that were malnourished in early life. Furthermore, the okara diet reversed the hypercholesterolemia and the hepatic steatosis observed in the malnutrition and prevented glucose intolerance in an animal model prone to diabetes mellitus.


Anais Da Academia Brasileira De Ciencias | 2015

Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

Cristiana dos Santos Barbosa Salvatierra; Silvia Regina de Lima Reis; Ana F.M. Pessoa; Letícia Martins Ignácio de Souza; Luiz Fabrizio Stoppiglia; Roberto Vilela Veloso; Marise Auxiliadora de Barros Reis; Everardo M. Carneiro; Antonio C. Boschero; Edson Moleta Colodel; Vanessa Cristina Arantes; Márcia Q. Latorraca

The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rats in the experimental groups were fed a low-protein diet (6%) for 15 days. Low protein diet during pregnancy increased serum prolactin level, reduced serum corticosterone concentration and the expression of both protein kinase B/AKT1 (AKT1) and p70 ribosomal protein S6 kinase (p70S6K), as well as the islets area, but did not alter the insulin content of pancreatic islets. Pregnancy increased the expression of the Src homology/collagen (SHC) protein and the extracellular signal-regulated kinases 1/2 (ERK1/2) independent of diet. ERK1/2 phosphorylation (pERK1/2) was similar in islets from pregnant and non-pregnant rats fed a low-protein diet, and was higher in islets from pregnant rats than in islets from non-pregnant rats fed a normal-protein diet. Thus, a short-term, low-protein diet during pregnancy was sufficient to reduce the levels of proteins in the phosphatidylinositol 3-kinase pathway and affect islet morphometry.

Collaboration


Dive into the Roberto Vilela Veloso's collaboration.

Top Co-Authors

Avatar

Márcia Q. Latorraca

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Vanessa Cristina Arantes

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Antonio C. Boschero

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Everardo M. Carneiro

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Regina de Lima Reis

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Salete Ferreira Martins

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Cristine L. P. Ferreira

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge