Robin Bekrater-Bodmann
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robin Bekrater-Bodmann.
European Journal of Pain | 2014
Jens Foell; Robin Bekrater-Bodmann; Martin Diers; Herta Flor
Phantom limb pain (PLP) is a common consequence of amputation and is difficult to treat. Mirror therapy (MT), a procedure utilizing the visual recreation of movement of a lost limb by moving the intact limb in front of a mirror, has been shown to be effective in reducing PLP. However, the neural correlates of this effect are not known.
Brain Research | 2012
Robin Bekrater-Bodmann; Jens Foell; Martin Diers; Herta Flor
The rubber hand illusion (RHI) offers the opportunity to systematically manipulate the experience of embodiment, which is here used to describe the subjective integration of an external object into ones body representation. Among the cortical regions involved in the processing of body perception, the ventral premotor cortex seems to be crucial in the integration of visuotactile stimuli. However, it is not known if the perceived vividness of the RHI is a trait or a state variable. In the present study, we varied the setup of the RHI to test the stability of perception. The illusion was induced in two different contexts, with either a horizontal or vertical displacement of the rubber hand in respect to the real hand. Further, the RHI was induced twice with an interval of at least six months and long-term changes on the perceptual and behavioral level were evaluated. Finally, we measured the long-term stability of cortical activity during the induction of a vertical RHI using functional magnetic resonance imaging. We found that a vertical setup induced higher ratings of illusory embodiment of the rubber hand than a horizontal setup, but the responses to both setups were significantly correlated. There was high intra-individual long-term stability of the subjective perception of illusory embodiment but a lower stability on the behavioral level. The functional magnetic resonance imaging data suggest temporally stable ventral premotor cortex processing. These results indicate that dynamic changes in perceived limb ownership by the induction of the RHI are trait-like.
The International Journal of Lower Extremity Wounds | 2011
Jens Foell; Robin Bekrater-Bodmann; Herta Flor; Jonathan Cole
Phantom sensations, that is, sensations perceived in a body part that has been lost, are a common consequence of accidental or clinical extremity amputations. Most amputation patients report a continuing presence of the limb, with some describing additional sensations such as numbness, tickling, or cramping of the phantom limb. The type, frequency, and stability of these phantom sensations can vary immensely. The phenomenon of painful phantom sensations, that is, phantom limb pain, presents a challenge for practitioners and researchers and is often detrimental to the patient’s quality of life. In addition to the use of conventional therapies for chronic pain disorders, recent years have seen the development of novel treatments for phantom limb pain, based on an increasing body of research on neurophysiological changes after amputation. This article describes the current state of research in regard to the demographics, causal factors, and treatments of phantom limb pain.
Frontiers in Human Neuroscience | 2013
Jens Foell; Robin Bekrater-Bodmann; Candida S. McCabe; Herta Flor
Objectives: Several studies have shown that mirrored arm or leg movements can induce altered body sensations. This includes the alleviation of chronic pain using congruent mirror feedback and the induction of abnormal sensation in healthy participants using incongruent mirror feedback. Prior research has identified neuronal and conceptual mechanisms of these phenomena. With the rising application of behavior-based methods for pain relief, a structured investigation of these reported effects seems necessary. Methods: We investigated a mirror setup that included congruent and incongruent hand and arm movements in 113 healthy participants and assessed the occurrence and intensity of unusual physical experiences such as pain, the sensation of missing or additional limbs, or changes in weight or temperature. A wooden surface instead of a mirror condition served as control. Results: As reported earlier, mirrored movements led to a variety of subjective reactions in both the congruent and incongruent movement condition, with the sensation of possessing a third limb being significantly more intense and frequent in the incongruent mirror condition. Reports of illusory pain were not more frequent during mirrored than during non-mirrored movements. Conclusion: These results suggest that, while all mirrored hand movements induce abnormal body perceptions, the experience of an extra limb is most pronounced in the incongruent mirror movement condition. The frequent sensation of having a third arm may be related to brain processes designed to integrate input from several senses in a meaningful manner. Painful sensations are not more frequent or intense when a mirror is present.
Behavior Research Methods | 2014
Jörg Trojan; Martin Diers; Xaver Fuchs; Felix Bach; Robin Bekrater-Bodmann; Jens Foell; Sandra Kamping; Mariela Rance; Heiko Maaß; Herta Flor
Mirror training and movement imagery have been demonstrated to be effective in treating several clinical conditions, such as phantom limb pain, stroke-induced hemiparesis, and complex regional pain syndrome. This article presents an augmented reality home-training system based on the mirror and imagery treatment approaches for hand training. A head-mounted display equipped with cameras captures one hand held in front of the body, mirrors this hand, and displays it in real time in a set of four different training tasks: (1) flexing fingers in a predefined sequence, (2) moving the hand into a posture fitting into a silhouette template, (3) driving a “Snake” video game with the index finger, and (4) grasping and moving a virtual ball. The system records task performance and transfers these data to a central server via the Internet, allowing monitoring of training progress. We evaluated the system by having 7 healthy participants train with it over the course of ten sessions of 15-min duration. No technical problems emerged during this time. Performance indicators showed that the system achieves a good balance between relatively easy and more challenging tasks and that participants improved significantly over the training sessions. This suggests that the system is well suited to maintain motivation in patients, especially when it is used for a prolonged period of time.
PLOS ONE | 2014
Robin Bekrater-Bodmann; Jens Foell; Martin Diers; Sandra Kamping; Mariela Rance; Pinar Kirsch; Jörg Trojan; Xaver Fuchs; Felix Bach; Hüseyin Çakmak; Heiko Maaß; Herta Flor
In the so-called rubber hand illusion, synchronous visuotactile stimulation of a visible rubber hand together with ones own hidden hand elicits ownership experiences for the artificial limb. Recently, advanced virtual reality setups were developed to induce a virtual hand illusion (VHI). Here, we present functional imaging data from a sample of 25 healthy participants using a new device to induce the VHI in the environment of a magnetic resonance imaging (MRI) system. In order to evaluate the neuronal robustness of the illusion, we varied the degree of synchrony between visual and tactile events in five steps: in two conditions, the tactile stimulation was applied prior to visual stimulation (asynchrony of −300 ms or −600 ms), whereas in another two conditions, the tactile stimulation was applied after visual stimulation (asynchrony of +300 ms or +600 ms). In the fifth condition, tactile and visual stimulation was applied synchronously. On a subjective level, the VHI was successfully induced by synchronous visuotactile stimulation. Asynchronies between visual and tactile input of ±300 ms did not significantly diminish the vividness of illusion, whereas asynchronies of ±600 ms did. The temporal order of visual and tactile stimulation had no effect on VHI vividness. Conjunction analyses of functional MRI data across all conditions revealed significant activation in bilateral ventral premotor cortex (PMv). Further characteristic activation patterns included bilateral activity in the motion-sensitive medial superior temporal area as well as in the bilateral Rolandic operculum, suggesting their involvement in the processing of bodily awareness through the integration of visual and tactile events. A comparison of the VHI-inducing conditions with asynchronous control conditions of ±600 ms yielded significant PMv activity only contralateral to the stimulation site. These results underline the temporal limits of the induction of limb ownership related to multisensory body-related input.
PLOS ONE | 2015
Robin Bekrater-Bodmann; Michael Schredl; Martin Diers; Iris Reinhard; Jens Foell; Jörg Trojan; Xaver Fuchs; Herta Flor
The experience of post-amputation pain such as phantom limb pain (PLP) and residual limb pain (RLP), is a common consequence of limb amputation, and its presence has negative effects on a person’s well-being. The continuity hypothesis of dreams suggests that the presence of such aversive experiences in the waking state should be reflected in dream content, with the recalled body representation reflecting a cognitive proxy of negative impact. In the present study, we epidemiologically assessed the presence of post-amputation pain and other amputation-related information as well as recalled body representation in dreams in a sample of 3,234 unilateral limb amputees. Data on the site and time of amputation, residual limb length, prosthesis use, lifetime prevalence of mental disorders, presence of post-amputation pain, and presence of non-painful phantom phenomena were included in logistic regression analyses using recalled body representation in dreams (impaired, intact, no memory) as dependent variable. The effects of age, sex, and frequency of dream recall were controlled for. About 22% of the subjects indicated that they were not able to remember their body representation in dreams, another 24% of the amputees recalled themselves as always intact, and only a minority of less than 3% recalled themselves as always impaired. Almost 35% of the amputees dreamed of themselves in a mixed fashion. We found that lower-limb amputation as well as the presence of PLP and RLP was positively associated with the recall of an impaired body representation in dreams. The presence of non-painful phantom phenomena, however, had no influence. These results complement previous findings and indicate complex interactions of physical body appearance and mental body representation, probably modulated by distress in the waking state. The findings are discussed against the background of alterations in cognitive processes after amputation and hypotheses suggesting an innate body model.
Pain | 2015
Robin Bekrater-Bodmann; Boo Young Chung; Ingmarie Richter; Manon Wicking; Jens Foell; Falk Mancke; Christian Schmahl; Herta Flor
Abstract It is well documented that borderline personality disorder (BPD) is characterized by reduced pain sensitivity, which might be related to nonsuicidal self-injury and dissociative experiences in patients with BPD. However, it remains an open question whether this insensitivity relies at least partly on altered sensory integration or on an altered evaluation of pain or a combination of both. In this study, we used the thermal grill illusion (TGI), describing a painful sensation induced by the application of alternating cold and warm nonnoxious stimuli, in patients with either current or remitted BPD as well as matched healthy controls. Two additional conditions, applying warm or cold temperatures only, served as control. We further assessed thermal perception, discrimination, and pain thresholds. We found significantly reduced heat and cold pain thresholds for the current BPD group, as well as reduced cold pain thresholds for the remitted BPD group, as compared with the HC group. Current BPD patients perceived a less-intense TGI in terms of induced pain and unpleasantness, while their general ability to perceive this kind of illusion seemed to be unaffected. Thermal grill illusion magnitude was negatively correlated with dissociation and traumatization only in the current BPD patients. These results indicate that higher-order pain perception is altered in current BPD, which seems to normalize after remission. We discuss these findings against the background of neurophysiological evidence for the TGI in general and reduced pain sensitivity in BPD and suggest a relationship to alterations in N-methyl-D-aspartate neurotransmission.
Scientific Reports | 2016
Yuanyuan Lyu; Xiaoli Guo; Robin Bekrater-Bodmann; Herta Flor; Shanbao Tong
A potential contributor to impaired motor imagery in amputees is an alteration of the body schema as a result of the presence of a phantom limb. However, the nature of the relationship between motor imagery and phantom experiences remains unknown. In this study, the influence of phantom limb perception on motor imagery was investigated using a hand mental rotation task by means of behavioral and electrophysiological measures. Compared with healthy controls, significantly prolonged response time for both the intact and missing hand were observed specifically in amputees who perceived a phantom limb during the task but not in amputees without phantom limb perception. Event-related desynchronization of EEG in the beta band (beta-ERD) in central and parietal areas showed an angular disparity specifically in amputees with phantom limb perception, with its source localized in the right inferior parietal lobule. The response time as well as the beta-ERD values were significantly positively correlated with phantom vividness. Our results suggest that phantom limb perception during the task is an important interferential factor for motor imagery after amputation and the interference might be related to a change of the body representation resulting from an unnatural posture of the phantom limb.
The Journal of Neuroscience | 2011
Robin Bekrater-Bodmann; Jens Foell; Sandra Kamping
The perception of ones own hand is an eminently coherent impression: proprioceptive, tactile, and visual inputs usually correspond perfectly. Current theoretical frameworks postulate that this multimodal integration is required for a feeling of ownership of the body, and is ultimately accompanied