Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin Foà is active.

Publication


Featured researches published by Robin Foà.


Cell | 2007

A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing

Pablo Landgraf; Mirabela Rusu; Robert L. Sheridan; Alain Sewer; Nicola Iovino; Alexei A. Aravin; Sébastien Pfeffer; Amanda Rice; Alice O. Kamphorst; Markus Landthaler; Carolina Lin; Nicholas D. Socci; Leandro C. Hermida; Valerio Fulci; Sabina Chiaretti; Robin Foà; Julia Schliwka; Uta Fuchs; Astrid Novosel; Roman Ulrich Müller; Bernhard Schermer; Ute Bissels; Jason M. Inman; Quang Phan; Minchen Chien; David B. Weir; Ruchi Choksi; Gabriella De Vita; Daniela Frezzetti; Hans Ingo Trompeter

MicroRNAs (miRNAs) are small noncoding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents that were enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units, and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses.


The New England Journal of Medicine | 2011

BRAF Mutations in Hairy-Cell Leukemia

Enrico Tiacci; Vladimir Trifonov; Gianluca Schiavoni; Antony B. Holmes; Wolfgang Kern; Maria Paola Martelli; Alessandra Pucciarini; Barbara Bigerna; Roberta Pacini; Victoria A. Wells; Paolo Sportoletti; Valentina Pettirossi; Roberta Mannucci; Oliver Elliott; Arcangelo Liso; Achille Ambrosetti; Alessandro Pulsoni; Francesco Forconi; Livio Trentin; Gianpietro Semenzato; Giorgio Inghirami; Monia Capponi; Francesco Di Raimondo; Caterina Patti; Luca Arcaini; Pellegrino Musto; Stefano Pileri; Claudia Haferlach; Susanne Schnittger; Giovanni Pizzolo

BACKGROUND Hairy-cell leukemia (HCL) is a well-defined clinicopathological entity whose underlying genetic lesion is still obscure. METHODS We searched for HCL-associated mutations by performing massively parallel sequencing of the whole exome of leukemic and matched normal cells purified from the peripheral blood of an index patient with HCL. Findings were validated by Sanger sequencing in 47 additional patients with HCL. RESULTS Whole-exome sequencing identified five missense somatic clonal mutations that were confirmed on Sanger sequencing, including a heterozygous mutation in BRAF that results in the BRAF V600E variant protein. Since BRAF V600E is oncogenic in other tumors, further analyses were focused on this genetic lesion. The same BRAF mutation was noted in all the other 47 patients with HCL who were evaluated by means of Sanger sequencing. None of the 195 patients with other peripheral B-cell lymphomas or leukemias who were evaluated carried the BRAF V600E variant, including 38 patients with splenic marginal-zone lymphomas or unclassifiable splenic lymphomas or leukemias. In immunohistologic and Western blot studies, HCL cells expressed phosphorylated MEK and ERK (the downstream targets of the BRAF kinase), indicating a constitutive activation of the RAF-MEK-ERK mitogen-activated protein kinase pathway in HCL. In vitro incubation of BRAF-mutated primary leukemic hairy cells from 5 patients with PLX-4720, a specific inhibitor of active BRAF, led to a marked decrease in phosphorylated ERK and MEK. CONCLUSIONS; The BRAF V600E mutation was present in all patients with HCL who were evaluated. This finding may have implications for the pathogenesis, diagnosis, and targeted therapy of HCL. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).


Lancet Oncology | 2015

Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study

Max S. Topp; Nicola Gökbuget; Anthony S. Stein; Gerhard Zugmaier; Susan O'Brien; Ralf Bargou; Hervé Dombret; Adele K. Fielding; Leonard T. Heffner; Richard A. Larson; Svenja Neumann; Robin Foà; Mark R. Litzow; Josep Maria Ribera; Alessandro Rambaldi; Gary J. Schiller; Monika Brüggemann; Heinz A. Horst; Chris Holland; Catherine Jia; Tapan Maniar; Birgit Huber; Dirk Nagorsen; Stephen J. Forman; Hagop M. Kantarjian

BACKGROUND Adults with relapsed or refractory B-precursor acute lymphoblastic leukaemia have an unfavourable prognosis. Blinatumomab is a bispecific T-cell engager antibody construct targeting CD19, an antigen consistently expressed on B-lineage acute lymphoblastic leukaemia cells. We aimed to confirm the activity and safety profile of blinatumomab for acute lymphoblastic leukaemia. METHODS In a multicentre, single-arm, open-label phase 2 study, we enrolled adult patients with Philadelphia-chromosome-negative, primary refractory or relapsed (first relapse within 12 months of first remission, relapse within 12 months after allogeneic haemopoietic stem-cell transplantation [HSCT], or no response to or relapse after first salvage therapy or beyond) leukaemia. Patients received blinatumomab (9 μg/day for the first 7 days and 28 μg/day thereafter) by continuous intravenous infusion over 4 weeks every 6 weeks (up to five cycles), per protocol. The primary endpoint was complete remission (CR) or CR with partial haematological recovery of peripheral blood counts (CRh) within the first two cycles. Analysis was by intention to treat. This trial is registered at ClinicalTrials.gov, number NCT01466179. FINDINGS Between Jan 13, 2012, and Oct 10, 2013, 189 patients were enrolled and treated with blinatumomab. After two cycles, 81 (43%, 95% CI 36-50) patients had achieved a CR or CRh: 63 (33%) patients had a CR and 18 (10%) patients had a CRh. 32 (40%) of patients who achieved CR/CRh underwent subsequent allogeneic HSCT. The most frequent grade 3 or worse adverse events were febrile neutropenia (48 patients, 25%), neutropenia (30 patients, 16%), and anaemia (27 patients, 14%). Three (2%) patients had grade 3 cytokine release syndrome. Neurologic events of worst grade 3 or 4 occurred in 20 (11%) and four (2%) patients, respectively. Three deaths (due to sepsis, Escherichia coli sepsis, and Candida infection) were thought to be treatment-related by the investigators. INTERPRETATION Single-agent blinatumomab showed antileukaemia activity in adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia characterised by negative prognostic factors. Further assessment of blinatumomab treatment earlier in the course of the disease and in combination with other treatment approaches is warranted. FUNDING Amgen.


Journal of Experimental Medicine | 2011

Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation

Giulia Fabbri; Silvia Rasi; Davide Rossi; Vladimir Trifonov; Hossein Khiabanian; Jing Ma; Adina Grunn; Marco Fangazio; Daniela Capello; Sara Monti; Stefania Cresta; Ernesto Gargiulo; Francesco Forconi; Anna Guarini; Luca Arcaini; Marco Paulli; Luca Laurenti; Luigi Maria Larocca; Roberto Marasca; Valter Gattei; David Oscier; Francesco Bertoni; Charles G. Mullighan; Robin Foà; Laura Pasqualucci; Raul Rabadan; Riccardo Dalla-Favera; Gianluca Gaidano

Next generation sequencing and copy number analysis provide insights into the complexity of the CLL coding genome, and reveal an association between NOTCH1 mutational activation and poor prognosis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin

Ramiro Garzon; Michela Garofalo; Maria Paola Martelli; Roger Briesewitz; Lisheng Wang; Cecilia Fernandez-Cymering; Stefano Volinia; Chang Gong Liu; Susanne Schnittger; Torsten Haferlach; Arcangelo Liso; Daniela Diverio; Marco Mancini; Giovanna Meloni; Robin Foà; Massimo F. Martelli; Cristina Mecucci; Carlo M. Croce; Brunangelo Falini

Acute myeloid leukemia (AML) carrying NPM1 mutations and cytoplasmic nucleophosmin (NPMc+ AML) accounts for about one-third of adult AML and shows distinct features, including a unique gene expression profile. MicroRNAs (miRNAs) are small noncoding RNAs of 19–25 nucleotides in length that have been linked to the development of cancer. Here, we investigated the role of miRNAs in the biology of NPMc+ AML. The miRNA expression was evaluated in 85 adult de novo AML patients characterized for subcellular localization/mutation status of NPM1 and FLT3 mutations using a custom microarray platform. Data were analyzed by using univariate t test within BRB tools. We identified a strong miRNA signature that distinguishes NPMc+ mutated (n = 55) from the cytoplasmic-negative (NPM1 unmutated) cases (n = 30) and includes the up-regulation of miR-10a, miR-10b, several let-7 and miR-29 family members. Many of the down-regulated miRNAs including miR-204 and miR-128a are predicted to target several HOX genes. Indeed, we confirmed that miR-204 targets HOXA10 and MEIS1, suggesting that the HOX up-regulation observed in NPMc+ AML may be due in part by loss of HOX regulators-miRNAs. FLT3-ITD+ samples were characterized by up-regulation of miR-155. Further experiments demonstrated that the up-regulation of miR-155 was independent from FLT3 signaling. Our results identify a unique miRNA signature associated with NPMc+ AML and provide evidence that support a role for miRNAs in the regulation of HOX genes in this leukemia subtype. Moreover, we found that miR-155 was strongly but independently associated with FLT3-ITD mutations.


Journal of Experimental Medicine | 2004

Multiple Distinct Sets of Stereotyped Antigen Receptors Indicate a Role for Antigen in Promoting Chronic Lymphocytic Leukemia

Bradley T. Messmer; Emilia Albesiano; Dimitar G. Efremov; Fabio Ghiotto; Steven L. Allen; Jonathan E. Kolitz; Robin Foà; Rajendra N. Damle; Franco Fais; Davorka Messmer; Kanti R. Rai; Manlio Ferrarini; Nicholas Chiorazzi

Previous studies suggest that the diversity of the expressed variable (V) region repertoire of the immunoglobulin (Ig)H chain of B-CLL cells is restricted. Although limited examples of marked constraint in the primary structure of the H and L chain V regions exist, the possibility that this level of restriction is a general principle in this disease has not been accepted. This report describes five sets of patients, mostly with unmutated or minimally mutated IgV genes, with strikingly similar B cell antigen receptors (BCRs) arising from the use of common H and L chain V region gene segments that share CDR3 structural features such as length, amino acid composition, and unique amino acid residues at recombination junctions. Thus, a much more striking degree of structural restriction of the entire BCR and a much higher frequency of receptor sharing exists among patients than appreciated previously. The data imply that either a significant fraction of B-CLL cells was selected by a limited set of antigenic epitopes at some point in their development and/or that they derive from a distinct B cell subpopulation with limited Ig V region diversity. These shared, stereotyped Ig molecules may be valuable probes for antigen identification and important targets for cross-reactive idiotypic therapy.


Journal of Clinical Oncology | 2010

Clinical Utility of Microarray-Based Gene Expression Profiling in the Diagnosis and Subclassification of Leukemia: Report From the International Microarray Innovations in Leukemia Study Group

Torsten Haferlach; Alexander Kohlmann; Lothar Wieczorek; Giuseppe Basso; Geertruy te Kronnie; Marie C. Béné; John De Vos; Jesús Hernández; Wolf K. Hofmann; Ken I. Mills; Amanda F. Gilkes; Sabina Chiaretti; Sheila A. Shurtleff; Thomas J. Kipps; Laura Z. Rassenti; Allen Eng Juh Yeoh; Peter Papenhausen; Wei-min Liu; P. Mickey Williams; Robin Foà

PURPOSE The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to todays state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias.


Journal of Experimental Medicine | 2008

Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia

Elisabetta Flex; Valentina Petrangeli; Lorenzo Stella; Sabina Chiaretti; Tekla Hornakova; Laurent Knoops; Cristina Ariola; Valentina Fodale; Emmanuelle Clappier; Francesca Paoloni; Simone Martinelli; Alessandra Fragale; Massimo Sanchez; Simona Tavolaro; Monica Messina; Giovanni Cazzaniga; Andrea Camera; Giovanni Pizzolo; Assunta Tornesello; Marco Vignetti; Angela Battistini; Hélène Cavé; Bruce D. Gelb; Jean-Christophe Renauld; Andrea Biondi; Stefan N. Constantinescu; Robin Foà; Marco Tartaglia

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. We report that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis. All mutations were missense, and some were predicted to destabilize interdomain interactions controlling the activity of the kinase. Three mutations that were studied promoted JAK1 gain of function and conferred interleukin (IL)-3–independent growth in Ba/F3 cells and/or IL-9–independent resistance to dexamethasone-induced apoptosis in T cell lymphoma BW5147 cells. Such effects were associated with variably enhanced activation of multiple downstream signaling pathways. Leukemic cells with mutated JAK1 alleles shared a gene expression signature characterized by transcriptional up-regulation of genes positively controlled by JAK signaling. Our findings implicate dysregulated JAK1 function in ALL, particularly of T cell origin, and point to this kinase as a target for the development of novel antileukemic drugs.


Journal of Clinical Oncology | 2007

Melphalan, Prednisone, and Lenalidomide Treatment for Newly Diagnosed Myeloma: A Report From the GIMEMA—Italian Multiple Myeloma Network

Antonio Palumbo; Patrizia Falco; Paolo Corradini; Antonietta Falcone; Francesco Di Raimondo; Nicola Giuliani; Claudia Crippa; Giovannino Ciccone; Paola Omedè; Maria Teresa Ambrosini; Sara Bringhen; Pellegrino Musto; Robin Foà; Robert Knight; Jerome B. Zeldis; Mario Boccadoro; Maria Teresa Petrucci

PURPOSE Lenalidomide has shown significant antimyeloma activity in clinical studies. Oral melphalan, prednisone, and thalidomide have been regarded as the standard of care in elderly multiple myeloma patients. We assessed dosing, efficacy, and safety of melphalan, prednisone, and lenalidomide (MPR) in newly diagnosed elderly myeloma patients. PATIENTS AND METHODS Oral melphalan was administered in doses ranging from 0.18 to 0.25 mg/kg on days 1 to 4, prednisone at a 2-mg/kg dose on days 1 to 4, and lenalidomide at doses ranging from 5 to 10 mg on days 1 to 21, every 28 days for nine cycles, followed by maintenance therapy with lenalidomide alone. Aspirin was given as a prophylaxis for thrombosis. RESULTS Fifty-four patients were enrolled and evaluated after completing the assigned treatment schedule. The maximum tolerated dose was defined as 0.18 mg/kg melphalan and 10 mg lenalidomide. With these doses, 81% of patients achieved at least a partial response, 47.6% achieved a very good partial response, and 23.8% achieved a complete immunofixation-negative response. In all patients, 1-year event-free and overall survival rates were 92% and 100%, respectively. At the maximum tolerated dose, grade 3 adverse events included neutropenia (38.1%), thrombocytopenia (14.2%), febrile neutropenia (9.5%), vasculitis (9.5%), and thromboembolism (4.8%); grade 4 adverse events were neutropenia (14.2%) and thrombocytopenia (9.5%). CONCLUSION Oral MPR therapy is a promising first-line treatment for elderly myeloma patients. Hematologic adverse events were frequent but manageable. A low incidence of nonhematologic adverse events was noted. Aspirin appears to provide adequate antithrombosis prophylaxis.


Blood | 2013

Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia.

Davide Rossi; Silvia Rasi; Valeria Spina; Alessio Bruscaggin; Sara Monti; Carmela Ciardullo; Clara Deambrogi; Hossein Khiabanian; Roberto Serra; Francesco Bertoni; Francesco Forconi; Luca Laurenti; Roberto Marasca; Michele Dal-Bo; Francesca Rossi; Pietro Bulian; Josep Nomdedeu; Giovanni Del Poeta; Valter Gattei; Laura Pasqualucci; Raul Rabadan; Robin Foà; Riccardo Dalla-Favera; Gianluca Gaidano

The identification of new genetic lesions in chronic lymphocytic leukemia (CLL) prompts a comprehensive and dynamic prognostic algorithm including gene mutations and chromosomal abnormalities and their changes during clonal evolution. By integrating mutational and cytogenetic analysis in 1274 CLL samples and using both a training-validation and a time-dependent design, 4 CLL subgroups were hierarchically classified: (1) high-risk, harboring TP53 and/or BIRC3 abnormalities (10-year survival: 29%); (2) intermediate-risk, harboring NOTCH1 and/or SF3B1 mutations and/or del11q22-q23 (10-year survival: 37%); (3) low-risk, harboring +12 or a normal genetics (10-year survival: 57%); and (4) very low-risk, harboring del13q14 only, whose 10-year survival (69.3%) did not significantly differ from a matched general population. This integrated mutational and cytogenetic model independently predicted survival, improved CLL prognostication accuracy compared with FISH karyotype (P < .0001), and was externally validated in an independent CLL cohort. Clonal evolution from lower to higher risk implicated the emergence of NOTCH1, SF3B1, and BIRC3 abnormalities in addition to TP53 and 11q22-q23 lesions. By taking into account clonal evolution through time-dependent analysis, the genetic model maintained its prognostic relevance at any time from diagnosis. These findings may have relevant implications for the design of clinical trials aimed at assessing the use of mutational profiling to inform therapeutic decisions.

Collaboration


Dive into the Robin Foà's collaboration.

Top Co-Authors

Avatar

Anna Guarini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Sabina Chiaretti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonella Vitale

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Gaidano

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Davide Rossi

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Ilaria Del Giudice

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Vignetti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Monica Messina

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge