Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin H. Bogner is active.

Publication


Featured researches published by Robin H. Bogner.


Journal of Pharmaceutical Sciences | 2010

Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis

Sharad B. Murdande; Michael J. Pikal; Ravi Mysore Shanker; Robin H. Bogner

In recent years there has been growing interest in advancing amorphous pharmaceuticals as an approach for achieving adequate solubility. Due to difficulties in the experimental measurement of solubility, a reliable estimate of the solubility enhancement ratio of an amorphous form of a drug relative to its crystalline counterpart would be highly useful. We have developed a rigorous thermodynamic approach to estimate enhancement in solubility that can be achieved by conversion of a crystalline form to the amorphous form. We rigorously treat the three factors that contribute to differences in solubility between amorphous and crystalline forms. First, we calculate the free energy difference between amorphous and crystalline forms from thermal properties measured by modulated differential scanning calorimetry (MDSC). Secondly, since an amorphous solute can absorb significant amounts of water, which reduces its activity and solubility, a correction is made using water sorption isotherm data and the Gibbs-Duhem equation. Next, a correction is made for differences in the degree of ionization due to differences in solubilities of the two forms. Utilizing this approach the theoretically estimated solubility enhancement ratio of 7.0 for indomethacin (amorphous/gamma-crystal) was found to be in close agreement with the experimentally determined ratio of 4.9.


Pharmaceutical Development and Technology | 2007

Protein stability during freezing : Separation of stresses and mechanisms of protein stabilization

Bakul S. Bhatnagar; Robin H. Bogner; Michael J. Pikal

Although proteins are often frozen during processing or freeze-dried after formulation to improve their stability, they can undergo degradation leading to losses in biological activity during the process. During freezing, the physical environment of a protein changes dramatically leading to the development of stresses that impact protein stability. Low temperature, freeze-concentration, and ice formation are the three chief stresses resulting during cooling and freezing. Because of the increase in solute concentrations, freeze-concentration could also facilitate second order reactions, crystallization of buffer or non-buffer components, phase separation, and redistribution of solutes. An understanding of these stresses is critical to the determination of when during freezing a protein suffers degradation and therefore important in the design of stabilizer systems. With the exception of a few studies, the relative contribution of various stresses to the instability of frozen proteins has not been addressed in the freeze-drying literature. The purpose of this review is to describe the various stages of freezing and examine the consequences of the various stresses developing during freezing on protein stability and to assess their relative contribution to the destabilization process. The ongoing debate on thermodynamic versus kinetic mechanisms of stabilization in frozen environments and the current state of knowledge concerning those mechanisms are also reviewed in this publication. An understanding of the relative contributions of freezing stresses coupled with the knowledge of cryoprotection mechanisms is central to the development of more rational formulation and process design of stable lyophilized proteins.


Journal of Pharmaceutical Sciences | 2012

Application of Mesoporous Silicon Dioxide and Silicate in Oral Amorphous Drug Delivery Systems

Ken K. Qian; Robin H. Bogner

Aqueous solubility of an active pharmaceutical ingredient is an important consideration to ensure successful drug development. Mesoporous materials have been investigated as an amorphous drug delivery system owing to their nanosized capillaries and large surface areas. The complex interactions of crystalline compounds with mesoporous media and their implication in drug delivery are not well understood. Molecules interacting with porous media behave very differently than those in bulk phase. Their altered dynamics and thermodynamics play an important role in the properties and product performance of the amorphous system. In this review, application of mesoporous silicon dioxide and silicates in drug amorphization is the main focus. First, as background, the nature of gas-porous media interactions is summarized. The synthesis of various types of mesoporous silica, which are used by many investigators in this field, is described. Second, the behavior of molecules confined in mesopores is compared with those in bulk, crystalline phase. The molecular dynamics of compounds due to confinement, analyzed using various techniques, and their consequences in drug delivery are discussed. Finally, the preparation and performance of drug delivery systems using mesoporous silica are examined.


Pharmaceutical Research | 2010

Solubility Advantage of Amorphous Pharmaceuticals: II. Application of Quantitative Thermodynamic Relationships for Prediction of Solubility Enhancement in Structurally Diverse Insoluble Pharmaceuticals

Sharad B. Murdande; Michael J. Pikal; Ravi Mysore Shanker; Robin H. Bogner

ABSTRACTPurposeTo quantitatively assess the solubility advantage of amorphous forms of nine insoluble drugs with a wide range of physico-chemical properties utilizing a previously reported thermodynamic approach.MethodsThermal properties of amorphous and crystalline forms of drugs were measured using modulated differential calorimetry. Equilibrium moisture sorption uptake by amorphous drugs was measured by a gravimetric moisture sorption analyzer, and ionization constants were determined from the pH-solubility profiles. Solubilities of crystalline and amorphous forms of drugs were measured in de-ionized water at 25°C. Polarized microscopy was used to provide qualitative information about the crystallization of amorphous drug in solution during solubility measurement.ResultFor three out the nine compounds, the estimated solubility based on thermodynamic considerations was within two-fold of the experimental measurement. For one compound, estimated solubility enhancement was lower than experimental value, likely due to extensive ionization in solution and hence its sensitivity to error in pKa measurement. For the remaining five compounds, estimated solubility was about 4- to 53-fold higher than experimental results. In all cases where the theoretical solubility estimates were significantly higher, it was observed that the amorphous drug crystallized rapidly during the experimental determination of solubility, thus preventing an accurate experimental assessment of solubility advantage.ConclusionIt has been demonstrated that the theoretical approach does provide an accurate estimate of the maximum solubility enhancement by an amorphous drug relative to its crystalline form for structurally diverse insoluble drugs when recrystallization during dissolution is minimal.


Pharmaceutical Development and Technology | 2007

Solventless Pharmaceutical Coating Processes: A Review

Sagarika Bose; Robin H. Bogner

Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods—compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating—that can be used to coat the pharmaceutical dosage forms.


Pharmaceutical Research | 2002

Hydrogen Bonding with Adsorbent During Storage Governs Drug Dissolution from Solid-Dispersion Granules

Manish K. Gupta; Yin-Chao Tseng; Robin H. Bogner

AbstractPurpose. To investigate changes in drug dissolution on storage of ternary solid-dispersion granules containing poorly water-soluble drugs. Methods. Hot-melt granulation was used to prepare ternary solid-dispersion granules in which the drug was dispersed in a carrier and coated onto an adsorbent. Seven drugs including four carboxylic acid-containing drugs (BAY 12-9566, naproxen, ketoprofen, and indomethacin), a hydroxyl-containing drug (testosterone), an amide-containing drug (phenacetin), and a drug with no proton-donating group (progesterone) were studied. Gelucire 50/13 and polyethylene glycol (PEG) 8000 were used as dispersion carriers whereas Neusilin US2 (magnesium aluminosilicate) was used as the surface adsorbent. Results. Two competing mechanisms have been proposed to explain the complex changes observed in drug dissolution upon storage of solid dispersion granules. Conversion of the crystalline drug to the amorphous hydrogen bonded (to Neusilin) state seems to increase dissolution, whereas, the phenomenon of Ostwald ripening can be used to explain the decrease in drug dissolution upon storage. The solubility of the drug in Gelucire is a crucial factor in determining the predominant mechanism by governing the flux toward the surface of Neusilin. The mobility for this phenomenon was provided by the existence of the eutectic mixture in the molten liquid state during storage. Conclusions. A competitive balance between hydrogen bonding of the drugs with Neusilin and Ostwald ripening determines drug dissolution from solid-dispersion granules upon storage.


Pharmaceutical Development and Technology | 2001

Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent

Manish K. Gupta; Robin H. Bogner; Yin-Chao Tseng

A combination of solid dispersion and surface adsorption techniques was used to enhance the dissolution of a poorly water-soluble drug, BAY 12-9566. In addition to dissolution enhancement, this method allows compression of the granulated dispersion into tablets. Gelucire 50/13 (polyglycolized glycerides) was used as the solid dispersion carrier. Hot-melt granulation was performed to adsorb the melt of the drug and Gelucire 50/13 onto the surface of Neusilin US2 (magnesium alumino silicate), the surface adsorbent. Dispersion granules using various ratios of drug–Gelucire 50/13–Neusilin US2 were thus prepared. The dissolution profiles of BAY 12-9566 from the dispersion granules and corresponding physical mixtures were evaluated using USP Type II apparatus at 75 rpm. The dissolution medium consisted of 0.1 N hydrochloric acid (HCl) with 1% w/v sodium lauryl sulfate (SLS). Dissolution of BAY 12-9566 from the dispersion granules was enhanced compared to the physical mixture. The dissolution of BAY 12-9566 increased as a function of increased Gelucire 50/13 and Neusilin US2 loading and decreased with increased drug loading. In contrast to the usually observed decrease in dissolution on storage, an enhancement in dissolution was observed for the dispersion granules stored at 40°C/75% relative humidity (RH) for 2 and 4 weeks. Additionally, the flow and compressibility properties of dispersion granules were improved significantly when compared to the drug alone or the corresponding physical mixture. The ternary dispersion granules were compressed easily into tablets with up to 30% w/w drug loading. The extent of dissolution of drug from these tablets was greater than that from the uncompressed dispersion granules.


Journal of Pharmaceutical Sciences | 2012

Solution‐mediated phase transformation: Significance during dissolution and implications for bioavailability

Kristyn Greco; Robin H. Bogner

Solubility improvement of poorly soluble drug compounds is a key approach to ensuring the successful development of many new drugs. Methods used to improve the solubility of drug compounds include forming a salt, cocrystal, or amorphous solid. These methods of improving solubility can often lead to a phenomenon called solution-mediated phase transformation, a phase change that is facilitated through exposure to solution. Solution-mediated phase transformation occurs in three steps: dissolution to create a supersaturated solution followed by nucleation of less soluble phase and the growth of that phase. When the growth of the less soluble phase occurs on the surface of the metastable solid, this phenomenon can cause a marked decrease in dissolution rate during in vitro dissolution evaluation, and ultimately in vivo. Therefore, transformation to a less soluble solid during dissolution is an important aspect to consider when evaluating approaches to increase the solubility of a poorly soluble drug. Identification of solution-mediated phase transformation during dissolution is reviewed for powder dissolution, rotating disk method, and channel flow-through apparatus. Types of solution-mediated phase transformation are described in this report, including those involving salts, polymorphs, amorphous solids, and cocrystals. Many experimental examples are provided. Evidence of potential solution-mediated phase transformation in vivo is discussed to better understand the relationship between in vitro dissolution evaluation and in vivo performance.


Journal of Pharmacy and Pharmacology | 2007

Determination of calcium salt solubility with changes in pH and PCO2, simulating varying gastrointestinal environments

Sandra L. Goss; Karen A. Lemons; Jane E. Kerstetter; Robin H. Bogner

The amount of calcium available for absorption is dependent, in part, on its sustained solubility in the gastrointestinal (GI) tract. Many calcium salts, which are the calcium sources in supplements and food, have pH‐dependent solubility and may have limited availability in the small intestine, the major site of absorption. The equilibrium solubility of four calcium salts (calcium oxalate hydrate, calcium citrate tetrahydrate, calcium phosphate, calcium glycerophosphate) were determined at controlled pH values (7.5, 6.0, 4.5 and ≤ 3.0) and in distilled water. The solubility of calcium carbonate was also measured at pH 7.5, 6.0 and 4.5 with two CO2 environments (0.3 and 152 mmHg) above the solution. The precipitation profile of CaCO3 was calculated using in‐vivo data for bicarbonate and pH from literature and equilibrium calculations. As pH increased, the solubility of each calcium salt increased. However, in distilled water each salt produced a different pH, affecting its solubility value. Although calcium citrate does have a higher solubility than CaCO3 in water, there is little difference when the pH is controlled at pH 7.5. The partial pressure of CO2 also played a role in calcium carbonate solubility, depressing the solubility at pH 7.5. The calculations of soluble calcium resulted in profiles of available calcium, which agreed with previously published in‐vivo data on absorbed calcium. The experimental data illustrate the impact of pH and CO2 on the solubility of many calcium salts in the presence of bicarbonate secretions in the intestine. Calculated profiles using in‐vivo calcium and bicarbonate concentrations demonstrate that large calcium doses may not further increase intestinal calcium absorption once the calcium carbonate solubility product has been reached.


Pharmaceutical Development and Technology | 2011

Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement

Sharad B. Murdande; Michael J. Pikal; Ravi Mysore Shanker; Robin H. Bogner

Measurement of drug solubility is one of the key elements of active pharmaceutical ingredient (API) characterization during the drug discovery and development process. This report is a critical review of experimental methods reported in the literature for the measurement of aqueous solubility of amorphous, partially crystalline and crystalline organic compounds. A summary of high-throughput automated methods used in early drug discovery research is also provided in this report. This review summarizes the challenges that are encountered during solubility measurement and the complexities that are often overlooked. Even though there is an advantage in using the amorphous form of a drug due to its higher solubility, measurement of its solubility with useful accuracy is still a practical problem. Therefore, this review provides recommendations of preferred methods and precautions in using these methods to determine the aqueous solubility of amorphous and crystalline new molecular entities, with emphasis on the physico-chemical characterization of the solid state of the test substance.

Collaboration


Dive into the Robin H. Bogner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristyn Greco

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Ken K. Qian

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Sagarika Bose

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manish K. Gupta

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Pooja Sane

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge