Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin Hartman is active.

Publication


Featured researches published by Robin Hartman.


Journal of Drug Targeting | 2014

Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats.

Jaap Rip; Linda Chen; Robin Hartman; Angelique van den Heuvel; Arie Reijerkerk; Joan van Kregten; Burt van der Boom; Chantal C.M. Appeldoorn; Marco de Boer; David Maussang; Elizabeth C.M. de Lange; Pieter J. Gaillard

Abstract Partly due to poor blood–brain barrier drug penetration the treatment options for many brain diseases are limited. To safely enhance drug delivery to the brain, glutathione PEGylated liposomes (G-Technology®) were developed. In this study, in rats, we compared the pharmacokinetics and organ distribution of GSH-PEG liposomes using an autoquenched fluorescent tracer after intraperitoneal administration and intravenous administration. Although the appearance of liposomes in the circulation was much slower after intraperitoneal administration, comparable maximum levels of long circulating liposomes were found between 4 and 24 h after injection. Furthermore, 24 h after injection a similar tissue distribution was found. To investigate the effect of GSH coating on brain delivery in vitro uptake studies in rat brain endothelial cells (RBE4) and an in vivo brain microdialysis study in rats were used. Significantly more fluorescent tracer was found in RBE4 cell homogenates incubated with GSH-PEG liposomes compared to non-targeted PEG liposomes (1.8-fold, p < 0.001). In the microdialysis study 4-fold higher (p < 0.001) brain levels of fluorescent tracer were found after intravenous injection of GSH-PEG liposomes compared with PEG control liposomes. The results support further investigation into the versatility of GSH-PEG liposomes for enhanced drug delivery to the brain within a tolerable therapeutic window.


Transplantation | 2002

Evaluation of rat liver apoptotic and necrotic cell death after cold storage using Uw, Htk, and celsior

Irene H. Straatsburg; Salomon L. Abrahamse; Shao W. Song; Robin Hartman; Thomas M. van Gulik

Background. The benefit of Celsior in liver graft preservation is controversial. In the isolated perfused rat liver model, we compared the effects of Celsior, University of Wisconsin (UW), and histidine-tryptophan-ketoglutarate (HTK) preservation solutions on liver cell death. Methods. Rat livers were stored at 4°C for 0, 8, 16, or 24 hr in either Celsior, UW, or HTK and reperfused for 90 min (37°C). Bile secretion and perfusate levels of liver enzymes and histone-associated DNA fragments were measured. Apoptosis and oncotic necrosis were analyzed in biopsies by DNA gel electrophoresis, hematoxylin and eosin histology, and enzyme histochemistry for lactate dehydrogenase (LDH) and 5′-nucleotidase (5′-NT). Results. Perfusate flow rate through the liver during perfusion did not significantly differ among preservation solutions. Bile secretion was best preserved in UW livers after 16-hr (versus HTK livers) and 24-hr storage (versus HTK and Celsior livers). Enzyme leakage from UW livers was lower compared with HTK livers after 8-hr storage (serum glutamic oxaloacetic transaminase [SGOT], LDH) and with Celsior and HTK livers after 16-hr (SGOT, LDH) and 24-hr storage (SGOT, serum glutamic pyruvic transaminase, LDH, purine nucleoside phosphorylase). In situ LDH and 5′-NT activities were best preserved in UW livers (up to 24 hr), whereas enzyme activities declined remarkably in HTK livers (after 8 hr) and Celsior livers (after 16 hr of cold storage). Although perfusate DNA fragment levels were repeatedly lowest from Celsior livers, apoptotic DNA laddering and the number of fragmented nuclei in hematoxylin and eosin sections was not different among livers after 8, 16, or 24 hr of storage. Conclusions. Celsior and UW are equally effective in preventing rat liver cell death after 0–16 hr of cold preservation as compared with the less effective HTK solution. After 24-hr cold storage, rat livers were best preserved in UW. Furthermore, there was no significant difference in mode of cell death (apoptosis or oncotic necrosis) after storage in any of the three solutions.


Transplantation | 2002

Assessment of the AMC-bioartificial liver in the anhepatic pig

Meindert N. Sosef; Leo S. L. Abrahamse; Maarten-Paul van de Kerkhove; Robin Hartman; R.A.F.M. Chamuleau; Thomas M. van Gulik

Background. The anhepatic pig model was used to evaluate a bioartificial liver developed in our institution (AMC-BAL). The bioartificial liver is based on oxygenated plasma perfusion of porcine hepatocytes attached to a polyester matrix. Methods. Pigs (n=15) underwent total hepatectomy with restoration of caval continuity using a polyethylene, three-way prosthesis. In group I, pigs received limited intensive care under continuation of general anesthesia (n=5). Group II pigs (n=5) underwent, in addition, extracorporeal plasma perfusion of an AMC-BAL without hepatocytes (device control group). In group III (n=5), plasma perfusion occurred with an AMC-BAL loaded with autologous hepatocytes. Groups II and III were connected to the extracorporeal system 24 hr after hepatectomy, for a period of 24 hr. The main outcome parameters were as follows: survival time, liver enzymes (aspartate aminotransferase, alanine aminotransferase), blood ammonia, and total/direct bilirubin. Results. Survival (mean ± SD) of the anhepatic pigs was significantly increased in the BAL-treated group (group III: 65±15 hr), as compared with the control groups (group I: 46±6 hr and group II: 43±14 hr). Mean blood ammonia levels during BAL treatment were significantly lower in the BAL-treated group in comparison with both control groups (P =0.02). Total and direct bilirubin levels gradually increased after hepatectomy and reached maximum values of 1.98 mg/dl and 1.50 mg/dl, respectively, showing no differences between the three groups. Conclusions. (1) Treatment of anhepatic pigs with the AMC-BAL containing autologous hepatocytes significantly increases survival time, which is associated with a significant decrease in blood ammonia. 2) Anhepatic pigs demonstrate increasing direct bilirubin levels as a result of extrahepatic bilirubin conjugation.


European Journal of Neuroscience | 2007

Screening mouse vision with intrinsic signal optical imaging

J. Alexander Heimel; Robin Hartman; Josephine M. Hermans; Christiaan N. Levelt

The introduction of forward genetic screens in the mouse asks for techniques that make rapid screening of visual function possible. Transcranial imaging of intrinsic signal is suitable for this purpose and could detect the effects of retinal degeneration, and the increased predominance of the contralateral eye in albino animals. We quantified visual response properties of the cortex by introducing a normalization method to reduce the impact of biological noise. In addition, the presentation of a ‘reset’‐stimulus shortly after the probing stimulus at a different visual location could reduce the interstimulus time necessary for the decay of the response. Applying these novel methods, we found that acuity of C57Bl/6J mice rises from 0.35 cycles per degree (cpd) at postnatal day 25 to 0.56 cpd in adults. Temporal resolution was lower in adults than in juvenile animals. There was no patchy organization of spatial or temporal frequency preference at the intrinsic signal resolution. Monocular deprivation, a model for amblyopia and critical period plasticity, led to a loss in acuity and a shift towards the nondeprived eye in juvenile animals. Short deprivation did not lead to increased acuity of the nondeprived eye. In adults, a small ocular dominance shift was detectable with urethane anaesthesia. This was not observed when the combination of the opiate fentanyl, fluanisone with a benzodiazepine was used, adding evidence to the hypothesis that enhancing GABAA‐receptor function masks an adult shift. Together, these novel applications confirm that noninvasive screening of many functional properties of the visual cortex is possible.


Cell Transplantation | 2003

Induction of necrosis and DNA fragmentation during hypothermic preservation of hepatocytes in UW, HTK, and Celsior solutions.

Salomon L. Abrahamse; Pieter van Runnard Heimel; Robin Hartman; R.A.F.M. Chamuleau; Thomas M. van Gulik

Donor cells can be preserved in University of Wisconsin (UW), histidine-tryptophan-ketoglutarate (HTK), or Celsior solution. However, differences in efficacy and mode of action in preventing hypothermia-induced cell injury have not been unequivocally clarified. Therefore, we investigated and compared necrotic and apoptotic cell death of freshly isolated primary porcine hepatocytes after hypothermic preservation in UW, HTK, and Celsior solutions and subsequent normothermic culturing. Hepatocytes were isolated from porcine livers, divided in fractions, and hypothermically (4°C) stored in phosphate-buffered saline (PBS), UW, HTK, or Celsior solution. Cell necrosis and apoptosis were assessed after 24- and 48-h hypothermic storage and after 24-h normothermic culturing following the hypothermic preservation periods. Necrosis was assessed by trypan blue exclusion, lactate dehydrogenase (LDH) release, and mitochondrial 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction. Apoptosis was assessed by the induction of histone-associated DNA fragments and cellular caspase-3 activity. Trypan blue exclusion, LDH release, and MTT reduction of hypothermically preserved hepatocytes showed a decrease in cell viability of more than 50% during the first 24 h of hypothermic preservation. Cell viability was further decreased after 48-h preservation. DNA fragmentation was slightly enhanced in hepatocytes after preservation in all solutions, but caspase-3 activity was not significantly increased in these cells. Normothermic culturing of hypothermically preserved cells further decreased cell viability as assessed by LDH release and MTT reduction. Normothermic culturing of hypothermically preserved hepatocytes induced DNA fragmentation, but caspase-3 activity was not enhanced in these cells. Trypan blue exclusion, LDH leakage, and MTT reduction demonstrated the highest cell viability after storage in Celsior, and DNA fragmentation was the lowest in cells that had been stored in PBS and UW solutions. None of the preservation solutions tested in this study was capable of adequately preventing cell death of isolated porcine hepatocytes after 24-h hypothermic preservation and subsequent 24-h normothermic culturing. Culturing of isolated and hypothermically preserved hepatocytes induces DNA fragmentation, but does not lead to caspase-3 activation. With respect to necrosis and DNA fragmentation of hypothermically preserved cells, UW and Celsior were superior to PBS and HTK solutions in this model of isolated porcine hepatocyte preservation.


European Journal of Pharmaceutical Sciences | 2014

Prediction of methotrexate CNS distribution in different species – Influence of disease conditions

Joost Westerhout; Dirk-Jan van den Berg; Robin Hartman; Meindert Danhof; Elizabeth C.M. de Lange

Children and adults with malignant diseases have a high risk of prevalence of the tumor in the central nervous system (CNS). As prophylaxis treatment methotrexate is often given. In order to monitor methotrexate exposure in the CNS, cerebrospinal fluid (CSF) concentrations are often measured. However, the question is in how far we can rely on CSF concentrations of methotrexate as appropriate surrogate for brain target site concentrations, especially under disease conditions. In this study, we have investigated the spatial distribution of unbound methotrexate in healthy rat brain by parallel microdialysis, with or without inhibition of Mrp/Oat/Oatp-mediated active transport processes by a co-administration of probenecid. Specifically, we have focused on the relationship between brain extracellular fluid (brainECF) and CSF concentrations. The data were used to develop a systems-based pharmacokinetic (SBPK) brain distribution model for methotrexate. This model was subsequently applied on literature data on methotrexate brain distribution in other healthy and diseased rats (brainECF), healthy dogs (CSF) and diseased children (CSF) and adults (brainECF and CSF). Important differences between brainECF and CSF kinetics were found, but we have found that inhibition of Mrp/Oat/Oatp-mediated active transport processes does not significantly influence the relationship between brainECF and CSF fluid methotrexate concentrations. It is concluded that in parallel obtained data on unbound brainECF, CSF and plasma concentrations, under dynamic conditions, combined with advanced mathematical modeling is a most valid approach to develop SBPK models that allow for revealing the mechanisms underlying the relationship between brainECF and CSF concentrations in health and disease.


International Journal of Artificial Organs | 2002

Treatment of acute liver failure in pigs reduces hepatocyte function in a bioartificial liver support system.

Salomon L. Abrahamse; M.P. van de Kerkhove; Meindert N. Sosef; Robin Hartman; R.A.F.M. Chamuleau; T.M. van Gulik

Several different types of bioartificial liver (BAL) support systems have been developed to bridge patients suffering from acute liver failure (ALF) to transplantation or liver regeneration. In this study we assessed the effects of ALF plasma on hepatocyte function in the BAL system that has been developed in our center. Pigs (40–60 kg) were anaesthetised and a total hepatectomy was performed. Cells were isolated from the resected livers and were transferred to the bioreactor of the BAL system. Twenty hours after cell isolation, hepatocytes in the BAL were tested for cell viability and functional activity by using a recirculating test medium in which assessment of LDH leakage, ammonia clearance, urea synthesis, 7-ethoxycoumarin O-deethylase (ECOD) activity and pseudocholine esterase production was performed. Subsequently, two groups were studied. In one group (I, n=5), the cell-loaded bioreactor was used to treat the donor pig, rendered anhepatic, for 24 hours. In the second group (II, n=5) the bioreactor was cultured for 24 h and served as a control. After 24 hours treatment or culturing, the cell viability count and functional activity tests were repeated. The results show that hepatocytes in the BAL remained viable after 24 h treatment of anhepatic pigs, as shown by the LDH release and pseudocholine esterase production. However, metabolic functions such as ammonia clearance, ECOD and urea synthesis were reduced after 24 h exposure of hepatocytes to autologous ALF plasma, whereas these functions were unaltered after 24 h culturing of the cells in the bioreactor.


Pharmaceutical Research | 2017

A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations

Yumi Yamamoto; Pyry A. J. Välitalo; Dirk-Jan van den Berg; Robin Hartman; Willem van den Brink; Yin Cheong Wong; Dymphy Huntjens; Johannes H. Proost; An Vermeulen; Walter Krauwinkel; Suruchi Bakshi; Vincent Aranzana-Climent; Sandrine Marchand; Claire Dahyot-Fizelier; William Couet; Meindert Danhof; Johan G.C. van Hasselt; Elizabeth C.M. de Lange

PurposePredicting target site drug concentration in the brain is of key importance for the successful development of drugs acting on the central nervous system. We propose a generic mathematical model to describe the pharmacokinetics in brain compartments, and apply this model to predict human brain disposition.MethodsA mathematical model consisting of several physiological brain compartments in the rat was developed using rich concentration-time profiles from nine structurally diverse drugs in plasma, brain extracellular fluid, and two cerebrospinal fluid compartments. The effect of active drug transporters was also accounted for. Subsequently, the model was translated to predict human concentration-time profiles for acetaminophen and morphine, by scaling or replacing system- and drug-specific parameters in the model.ResultsA common model structure was identified that adequately described the rat pharmacokinetic profiles for each of the nine drugs across brain compartments, with good precision of structural model parameters (relative standard error <37.5%). The model predicted the human concentration-time profiles in different brain compartments well (symmetric mean absolute percentage error <90%).ConclusionsA multi-compartmental brain pharmacokinetic model was developed and its structure could adequately describe data across nine different drugs. The model could be successfully translated to predict human brain concentrations.


Aaps Journal | 2014

Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain.

Laura Kervezee; Robin Hartman; Dirk-Jan van den Berg; Shinji Shimizu; Yumi Emoto-Yamamoto; Johanna H. Meijer; Elizabeth C.M. de Lange

Nearly all bodily processes exhibit circadian rhythmicity. As a consequence, the pharmacokinetic and pharmacodynamic properties of a drug may also vary with time of day. The objective of this study was to investigate diurnal variation in processes that regulate drug concentrations in the brain, focusing on P-glycoprotein (P-gp). This efflux transporter limits the distribution of many drugs in the brain. To this end, the exposure to the P-gp substrate quinidine was determined in the plasma and brain tissue after intravenous administration in rats at six different time points over the 24-h period. Our results indicate that time of administration significantly affects the exposure to quinidine in the brain. Upon inhibition of P-gp, exposure to quinidine in brain tissue is constant over the 24-h period. To gain more insight into processes regulating brain concentrations, we used intracerebral microdialysis to determine the concentration of quinidine in brain extracellular fluid (ECF) and cerebrospinal fluid (CSF) after intravenous administration at two different time points. The data were analyzed by physiologically based pharmacokinetic modeling using NONMEM. The model shows that the variation is due to higher activity of P-gp-mediated transport from the deep brain compartment to the plasma compartment during the active period. Furthermore, the analysis reveals that CSF flux is higher in the resting period compared to the active period. In conclusion, we show that the exposure to a P-gp substrate in the brain depends on time of administration, thereby providing a new strategy for drug targeting to the brain.


PLOS ONE | 2008

Cre-Dependent Expression of Multiple Transgenes in Isolated Neurons of the Adult Forebrain

Sridhara Chakravarthy; Tara Keck; Martijn Roelandse; Robin Hartman; Andreas Jeromin; Sean Perry; Sonja B. Hofer; Thomas D. Mrsic-Flogel; Christiaan N. Levelt

Background Transgenic mice with mosaic, Golgi-staining-like expression of enhanced green fluorescent protein (EGFP) have been very useful in studying the dynamics of neuronal structure and function. In order to further investigate the molecular events regulating structural plasticity, it would be useful to express multiple proteins in the same sparse neurons, allowing co-expression of functional proteins or co-labeling of subcellular compartments with other fluorescent proteins. However, it has been difficult to obtain reproducible expression in the same subset of neurons for direct comparison of neurons expressing different functional proteins. Principal Findings Here we describe a Cre-transgenic line that allows reproducible expression of transgenic proteins of choice in a small number of neurons of the adult cortex, hippocampus, striatum, olfactory bulb, subiculum, hypothalamus, superior colliculus and amygdala. We show that using these Cre-transgenic mice, multiple Cre-dependent transgenes can be expressed together in the same isolated neurons. We also describe a Cre-dependent transgenic line expressing a membrane associated EGFP (EGFP-F). Crossed with the Cre-transgenic line, EGFP-F expression starts in the adolescent forebrain, is present in dendrites, dendritic protrusions, axons and boutons and is strong enough for acute or chronic in vivo imaging. Significance This triple transgenic approach will aid the morphological and functional characterization of neurons in various Cre-dependent transgenic mice.

Collaboration


Dive into the Robin Hartman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge