Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin J. Nakkula is active.

Publication


Featured researches published by Robin J. Nakkula.


Journal of Biological Chemistry | 2009

Acetylation of Histone H3 at the Nucleosome Dyad Alters DNA-Histone Binding

Mridula Manohar; Alex M. Mooney; Justin A. North; Robin J. Nakkula; Jonathan W. Picking; Annick Edon; Richard Fishel; Michael G. Poirier; Jennifer J. Ottesen

Histone post-translational modifications are essential for regulating and facilitating biological processes such as RNA transcription and DNA repair. Fifteen modifications are located in the DNA-histone dyad interface and include the acetylation of H3-K115 (H3-K115Ac) and H3-K122 (H3-K122Ac), but the functional consequences of these modifications are unknown. We have prepared semisynthetic histone H3 acetylated at Lys-115 and/or Lys-122 by expressed protein ligation and incorporated them into single nucleosomes. Competitive reconstitution analysis demonstrated that the acetylation of H3-K115 and H3-K122 reduces the free energy of histone octamer binding. Restriction enzyme kinetic analysis suggests that these histone modifications do not alter DNA accessibility near the sites of modification. However, acetylation of H3-K122 increases the rate of thermal repositioning. Remarkably, Lys → Gln substitution mutations, which are used to mimic Lys acetylation, do not fully duplicate the effects of the H3-K115Ac or H3-K122Ac modifications. Our results are consistent with the conclusion that acetylation in the dyad interface reduces DNA-histone interaction(s), which may facilitate nucleosome repositioning and/or assembly/disassembly.


Nucleic Acids Research | 2011

Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling

Justin A. North; Sarah Javaid; Michelle B. Ferdinand; Nilanjana Chatterjee; Jonathan W. Picking; Matthew Shoffner; Robin J. Nakkula; Blaine Bartholomew; Jennifer J. Ottesen; Richard Fishel; Michael G. Poirier

Nucleosomes, the fundamental units of chromatin structure, are regulators and barriers to transcription, replication and repair. Post-translational modifications (PTMs) of the histone proteins within nucleosomes regulate these DNA processes. Histone H3(T118) is a site of phosphorylation [H3(T118ph)] and is implicated in regulation of transcription and DNA repair. We prepared H3(T118ph) by expressed protein ligation and determined its influence on nucleosome dynamics. We find H3(T118ph) reduces DNA–histone binding by 2 kcal/mol, increases nucleosome mobility by 28-fold and increases DNA accessibility near the dyad region by 6-fold. Moreover, H3(T118ph) increases the rate of hMSH2–hMSH6 nucleosome disassembly and enables nucleosome disassembly by the SWI/SNF chromatin remodeler. These studies suggest that H3(T118ph) directly enhances and may reprogram chromatin remodeling reactions.


PLOS ONE | 2012

Preparation, Biodistribution and Neurotoxicity of Liposomal Cisplatin following Convection Enhanced Delivery in Normal and F98 Glioma Bearing Rats

Tianyao Huo; Rolf F. Barth; Weilian Yang; Robin J. Nakkula; Rumiana Koynova; Boris Tenchov; Abhik Ray Chaudhury; Lawrence M Agius; Teni Boulikas; Hélène Elleaume; Robert J. Lee

The purpose of this study was to evaluate two novel liposomal formulations of cisplatin as potential therapeutic agents for treatment of the F98 rat glioma. The first was a commercially produced agent, Lipoplatin™, which currently is in a Phase III clinical trial for treatment of non-small cell lung cancer (NSCLC). The second, produced in our laboratory, was based on the ability of cisplatin to form coordination complexes with lipid cholesteryl hemisuccinate (CHEMS). The in vitro tumoricidal activity of the former previously has been described in detail by other investigators. The CHEMS liposomal formulation had a Pt loading efficiency of 25% and showed more potent in vitro cytotoxicity against F98 glioma cells than free cisplatin at 24 h. In vivo CHEMS liposomes showed high retention at 24 h after intracerebral (i.c.) convection enhanced delivery (CED) to F98 glioma bearing rats. Neurotoxicologic studies were carried out in non-tumor bearing Fischer rats following i.c. CED of Lipoplatin™ or CHEMS liposomes or their “hollow” counterparts. Unexpectedly, Lipoplatin™ was highly neurotoxic when given i.c. by CED and resulted in death immediately following or within a few days after administration. Similarly “hollow” Lipoplatin™ liposomes showed similar neurotoxicity indicating that this was due to the liposomes themselves rather than the cisplatin. This was particularly surprising since Lipoplatin™ has been well tolerated when administered intravenously. In contrast, CHEMS liposomes and their “hollow” counterparts were clinically well tolerated. However, a variety of dose dependent neuropathologic changes from none to severe were seen at either 10 or 14 d following their administration. These findings suggest that further refinements in the design and formulation of cisplatin containing liposomes will be required before they can be administered i.c. by CED for the treatment of brain tumors and that a formulation that may be safe when given systemically may be highly neurotoxic when administered directly into the brain.


Developmental Dynamics | 2009

Cloning and spatiotemporal expression of zebrafish neuronal nicotinic acetylcholine receptor alpha 6 and alpha 4 subunit RNAs

Kristin Michelle Ackerman; Robin J. Nakkula; Jeffrey M. Zirger; Christine E. Beattie; R. Thomas Boyd

Acetylcholine plays an important role in regulation of nervous system development and function. We are developing zebrafish (Danio rerio) as a model system to study the role of specific neuronal nicotinic acetylcholine receptor (nAChR) subtypes in development and the effects of nicotine on the developing vertebrate nervous system. We previously characterized the expression of several zebrafish nAChR subunits. To further develop the zebrafish model, here we report a study on the molecular characterization of two additional nAChR subunit genes, designated chrna6 and chrna4. Both zebrafish nAChRs have a high degree of sequence identity to nAChRs expressed in a variety of mammalian species. Reverse transcription polymerase chain reaction was used to show that both nAChR subunit RNAs were expressed early in zebrafish development, with the chrna4 transcript present at 3 hours postfertilization (hpf) and the chrna6 RNA present at 10 hpf. In situ hybridization was used to localize chrna6 and chrna4 RNA expression in 24, 48, 72, and 96 hpf zebrafish. The chrna6 and chrna4 RNAs were each expressed in a unique pattern, which changed during development. At various ages, chrna6 was expressed in Rohon‐Beard sensory neurons, trigeminal ganglion, retina, and the pineal gland. Most notably, chrna6 was expressed in catecholaminergic neurons in the midbrain, but was also present in noncatecholaminergic cells in both midbrain and hindbrain. The expression of chrna6 RNA in catecholaminergic cells supports the use of zebrafish as a valid model system to better understand the molecular basis of cholinergic regulation of dopaminergic signaling and the role of α6‐containing nAChRs in Parkinsons disease. The most notable chrna4 expression was in neural crest cells at 24 hpf and reticulospinal neurons in hindbrain at 48 hpf. chrna4 RNA exhibited a widespread and robust expression pattern in the midbrain in 72 hpf and 96 hpf zebrafish. Developmental Dynamics 238:980–992, 2009.


Journal of Dental Research | 2002

Accumulation of Ciprofloxacin and Minocycline by Cultured Human Gingival Fibroblasts

Qing Yang; Robin J. Nakkula; John D. Walters

Through a mechanism that is unclear, systemic fluoroquinolones and tetracyclines can attain higher levels in gingival fluid than in blood. We hypothesized that gingival fibroblasts take up and accumulate these agents, thereby enhancing their redistribution to the gingiva. Using fluorescence to monitor transport activity, we characterized the accumulation of fluoroquinolones and tetracyclines in cultured human gingival fibroblast monolayers. Both were transported in a concentrative, temperature-dependent, and saturable manner. Fibroblasts transported ciprofloxacin and minocycline with Km values of 200 and 108 μg/mL, respectively, at maximum velocities of 4.62 and 14.2 ng/min/μg cell protein, respectively. For both agents, transport was most efficient at pH 7.2 and less efficient at pH 6.2 and 8.2. At steady state, the cellular/extracellular concentration ratio was > 8 for ciprofloxacin and > 60 for minocycline. Thus, gingival fibroblasts possess active transporters that could potentially contribute to the relatively high levels these agents attain in gingival fluid.


Antimicrobial Agents and Chemotherapy | 2000

Fluoroquinolone transport by human monocytes : Characterization and comparison to other cells of myeloid lineage

Steven J. Bounds; Robin J. Nakkula; John D. Walters

ABSTRACT Human monocytes transport and accumulate ciprofloxacin and other fluoroquinolones. Although little is known about the mechanisms of transport, we expected monocytes to be similar to other cells of myeloid lineage. In the present study, monocyte fluoroquinolone transport was characterized and compared to the corresponding transport pathways of human polymorphonuclear leukocytes (PMNs) and HL-60 cells. Ciprofloxacin transport by monocytes was saturable, temperature dependent, sodium independent, and relatively insensitive to pH. Quiescent monocytes transported ciprofloxacin with aKm of 171 μg/ml and aVmax of 32.7 ng/min/106 cells. Adenine competitively inhibited ciprofloxacin transport by quiescent monocytes (Ki = 3.8 mM), but nucleosides had no significant inhibitory effect. In all of these respects, transport by monocytes was similar to that observed for quiescent PMNs and immature HL-60 cells. Unlike PMNs, however, monocytes and immature HL-60 cells did not exhibit dramatically enhanced ciprofloxacin transport when activated by phorbol myristate acetate (PMA). Consistent with this finding, HL-60 cells committed to granulocytic differentiation exhibited a significant component of PMA-inducible ciprofloxacin transport activity, while HL-60 cells committed to monocytic differentiation did not. In PMNs, the PMA-inducible component of transport appeared to be mobilized from a granule compartment, since its activity could be modulated by agents that enhance or inhibit stimulated degranulation. Thus, quiescent monocytes, PMNs, and HL-60 cells take up ciprofloxacin via similar energy-dependent transport mechanisms. Unlike granulocytes, monocytes do not express a second, higher-affinity pathway for ciprofloxacin accumulation when they are activated by PMA.


Radiation Oncology | 2014

Radiation therapy combined with intracerebral administration of carboplatin for the treatment of brain tumors

Weilian Yang; Rolf F. Barth; Tianyao Huo; Robin J. Nakkula; Michael Weldon; Nilendu Gupta; Lawrence M Agius; John C. Grecula

BackgroundIn this study we determined if treatment combining radiation therapy (RT) with intracerebral (i.c.) administration of carboplatin to F98 glioma bearing rats could improve survival over that previously reported by us with a 15 Gy dose (5 Gy × 3) of 6 MV photons.MethodsFirst, in order to reduce tumor interstitial pressure, a biodistribution study was carried out to determine if pretreatment with dexamethasone alone or in combination with mannitol and furosemide (DMF) would increase carboplatin uptake following convection enhanced delivery (CED). Next, therapy studies were carried out in rats that had received carboplatin either by CED over 30 min (20 μg) or by Alzet pumps over 7 d (84 μg), followed by RT using a LINAC to deliver either 20 Gy (5 Gy × 4) or 15 Gy (7.5 Gy × 2) dose at 6 or 24 hrs after drug administration. Finally, a study was carried out to determine if efficacy could be improved by decreasing the time interval between drug administration and RT.ResultsTumor carboplatin values for D and DMF-treated rats were 9.4 ±4.4 and 12.4 ±3.2 μg/g, respectively, which were not significantly different (P = 0.14). The best survival data were obtained by combining pump delivery with 5 Gy × 4 of X-irradiation with a mean survival time (MST) of 107.7 d and a 43% cure rate vs. 83.6 d with CED vs. 30-35 d for RT alone and 24.6 d for untreated controls. Treatment-related mortality was observed when RT was initiated 6 h after CED of carboplatin and RT was started 7 d after tumor implantation. Dividing carboplatin into two 10 μg doses and RT into two 7.5 Gy fractions, administered 24 hrs later, yielded survival data (MST 82.1 d with a 25% cure rate) equivalent to that previously reported with 5 Gy × 3 and 20 μg of carboplatin.ConclusionsAlthough the best survival data were obtained by pump delivery, CED was highly effective in combination with 20 Gy, or as previously reported, 15 Gy, and the latter would be preferable since it would produce less late tissue effects.


Journal of Radiation Research | 2015

Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells

S. Lim; Anil K. Pradhan; Rolf F. Barth; Sultana N. Nahar; Robin J. Nakkula; Weilian Yang; Alycia M. Palmer; Claudia Turro; Michael Weldon; Erica Hlavin Bell; Xiaokui Mo

The purposes of this study were (i) to investigate the differences in effects between 160-kV low-energy and 6-MV high-energy X-rays, both by computational analysis and in vitro studies; (ii) to determine the effects of each on platinum-sensitized F98 rat glioma and murine B16 melanoma cells; and (iii) to describe the in vitro cytotoxicity and in vivo toxicity of a Pt(II) terpyridine platinum (Typ-Pt) complex. Simulations were performed using the Monte Carlo code Geant4 to determine enhancement in absorption of low- versus high-energy X-rays by Pt and to determine dose enhancement factors (DEFs) for a Pt-sensitized tumor phantom. In vitro studies were carried out using Typ-Pt and again with carboplatin due to the unexpected in vivo toxicity of Typ-Pt. Cell survival was determined using clonogenic assays. In agreement with computations and simulations, in vitro data showed up to one log unit reduction in surviving fractions (SFs) of cells treated with 1–4 µg/ml of Typ-Pt and irradiated with 160-kV versus 6-MV X-rays. DEFs showed radiosensitization in the 50–200 keV range, which fell to approximate unity at higher energies, suggesting marginal interactions at MeV energies. Cells sensitized with 1–5 or 7 µg/ml of carboplatin and then irradiated also showed a significant decrease (P < 0.05) in SFs. However, it was unlikely this was due to increased interactions. Theoretical and in vitro studies presented here demonstrated that the tumoricidal activity of low-energy X-rays was greater than that of high-energy X-rays against Pt-sensitized tumor cells. Determining whether radiosensitization is a function of increased interactions will require additional studies.


Journal of Pharmacology and Experimental Therapeutics | 2013

Cellular Influx, Efflux, and Anabolism of 3-Carboranyl Thymidine Analogs: Potential Boron Delivery Agents for Neutron Capture Therapy

Elena Sjuvarsson; Vijaya L. Damaraju; Delores Mowles; Michael B. Sawyer; Rohit Tiwari; Hitesh K. Agarwal; Ahmed Khalil; Sherifa Hasabelnaby; A. Goudah; Robin J. Nakkula; Rolf F. Barth; Carol E. Cass; Staffan Eriksson; Werner Tjarks

3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH) is a first generation 3-carboranyl thymidine analog (3CTA) that has been intensively studied as a boron-10 (10B) delivery agent for neutron capture therapy (NCT). N5-2OH is an excellent substrate of thymidine kinase 1 and its favorable biodistribution profile in rodents led to successful preclinical NCT of rats bearing intracerebral RG2 glioma. The present study explored cellular influx and efflux mechanisms of N5-2OH, as well as its intracellular anabolism beyond the monophosphate level. N5-2OH entered cultured human CCRF-CEM cells via passive diffusion, whereas the multidrug resistance-associated protein 4 appeared to be a major mediator of N5-2OH monophosphate efflux. N5-2OH was effectively monophosphorylated in cultured murine L929 [thymidine kinase 1 (TK1+)] cells whereas formation of N5-2OH monophosphate was markedly lower in L929 (TK1–) cell variants. Further metabolism to the di- and triphosphate forms was not observed in any of the cell lines. Regardless of monophosphorylation, parental N5-2OH was the major intracellular component in both TK1+ and TK1– cells. Phosphate transfer experiments with enzyme preparations showed that N5-2OH monophosphate, as well as the monophosphate of a second 3-carboranyl thymidine analog [3-[5-(o-carboran-1-yl)pentan-1-yl]thymidine (N5)], were not substrates of thymidine monophosphate kinase. Surprisingly, N5-diphosphate was phosphorylated by nucleoside diphosphate kinase although N5-triphosphate apparently was not a substrate of DNA polymerase. Our results provide valuable information on the cellular metabolism and pharmacokinetic profile of 3-carboranyl thymidine analogs.


Journal of Dental Research | 2005

Modulation of Gingival Fibroblast Minocycline Accumulation by Biological Mediators

John D. Walters; Robin J. Nakkula; P. Maney

Gingival fibroblasts actively accumulate tetracyclines, thereby enhancing their redistribution from blood to gingiva. Since growth factors and pro-inflammatory cytokines regulate many fibroblast activities, they could potentially enhance fibroblast minocycline accumulation. To test this hypothesis, we treated gingival fibroblast monolayers for 1 or 6 hours with platelet-derived growth factor-BB (PDGF), fibroblast growth factor-2 (FGF), transforming growth factor-β1 (TGF), or tumor necrosis factor-α (TNF). Minocycline uptake was assayed at 37° by a fluorescence method. All 4 factors significantly enhanced minocycline uptake (P ≤ 0.008, ANOVA), primarily by increasing the affinity of transport. Treatment for 6 hours with 10 ng/mL FGF, PDGF, TGF, or TNF enhanced fibroblast minocycline uptake by 19% to 25%. Phorbol myristate acetate enhanced fibroblast minocycline uptake by 28%, suggesting that protein kinase C plays a role in up-regulating transport. These effects on transport provide a mechanism by which systemic tetracyclines could be preferentially distributed to gingival wound or inflammatory sites.

Collaboration


Dive into the Robin J. Nakkula's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge