Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin Lemmens is active.

Publication


Featured researches published by Robin Lemmens.


Lancet Neurology | 2012

Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.

Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell

Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).


Nature Genetics | 2012

Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke.

Céline Bellenguez; Steve Bevan; Andreas Gschwendtner; Chris C. A. Spencer; Annette I. Burgess; M. Pirinen; Caroline Jackson; Matthew Traylor; Amy Strange; Zhan Su; Gavin Band; Paul D. Syme; Rainer Malik; Joanna Pera; Bo Norrving; Robin Lemmens; Colin Freeman; Renata Schanz; Tom James; Deborah Poole; Lee Murphy; Helen Segal; Lynelle Cortellini; Yu-Ching Cheng; Daniel Woo; Michael A. Nalls; Bertram Müller-Myhsok; Christa Meisinger; Udo Seedorf; Helen Ross-Adams

Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10−11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28–1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.


Nature Genetics | 2009

Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis

Michael A. van Es; Jan H. Veldink; Christiaan G.J. Saris; Hylke M. Blauw; Paul W.J. van Vught; Anna Birve; Robin Lemmens; Helenius J. Schelhaas; Ewout J.N. Groen; Mark H. B. Huisman; Anneke J. van der Kooi; Marianne de Visser; Caroline Dahlberg; Karol Estrada; Fernando Rivadeneira; Albert Hofman; Machiel J. Zwarts; Perry T.C. van Doormaal; Dan Rujescu; Eric Strengman; Ina Giegling; Pierandrea Muglia; Barbara Tomik; Agnieszka Slowik; André G. Uitterlinden; Corinna Hendrich; Stefan Waibel; Thomas Meyer; Albert C. Ludolph; Jonathan D. Glass

We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 × 10−4 in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 × 10−9. This SNP showed robust replication in the second cohort (P = 1.86 × 10−6), and a combined analysis over the two stages yielded P = 2.53 × 10−14. The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 × 10−9, and rs3849942, with P = 1.01 × 10−8) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.


Nature Genetics | 2008

Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis

Michael A. van Es; Paul W.J. van Vught; Hylke M. Blauw; Lude Franke; Christiaan G.J. Saris; Ludo Van Den Bosch; Sonja W. de Jong; Vianney de Jong; Frank Baas; Ruben van 't Slot; Robin Lemmens; Helenius J. Schelhaas; Anna Birve; K Sleegers; Christine Van Broeckhoven; Jennifer C. Schymick; Bryan J. Traynor; John H. J. Wokke; Cisca Wijmenga; Wim Robberecht; Peter Andersen; Jan H. Veldink; Roel A. Ophoff; Leonard H. van den Berg

We identified a SNP in the DPP6 gene that is consistently strongly associated with susceptibility to amyotrophic lateral sclerosis (ALS) in different populations of European ancestry, with an overall P value of 5.04 × 10−8 in 1,767 cases and 1,916 healthy controls and with an odds ratio of 1.30 (95% confidence interval (CI) of 1.18–1.43). Our finding is the first report of a genome-wide significant association with sporadic ALS and may be a target for future functional studies.


Lancet Neurology | 2007

ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study

Michael A. van Es; Paul W.J. van Vught; Hylke M. Blauw; Lude Franke; Christiaan G.J. Saris; Peter Andersen; Ludo Van Den Bosch; Sonja W. de Jong; Ruben van 't Slot; Anna Birve; Robin Lemmens; Vianney de Jong; Frank Baas; Helenius J. Schelhaas; Kristel Sleegers; Christine Van Broeckhoven; John H. J. Wokke; Cisca Wijmenga; Wim Robberecht; Jan H. Veldink; Roel A. Ophoff; Leonard H. van den Berg

BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating disease characterised by progressive degeneration of motor neurons in the brain and spinal cord. ALS is thought to be multifactorial, with both environmental and genetic causes. Our aim was to identify genetic variants that predispose for sporadic ALS. METHODS We did a three-stage genome-wide association study in 461 patients with ALS and 450 controls from The Netherlands, using Illumina 300K single-nucleotide polymorphism (SNP) chips. The SNPs that were most strongly associated with ALS were analysed in a further 876 patients and 906 controls in independent sample series from The Netherlands, Belgium, and Sweden. We also investigated the possible pathological functions of associated genes using expression data from whole blood of patients with sporadic ALS and of control individuals who were included in the genome-wide association study. FINDINGS A genetic variant in the inositol 1,4,5-triphosphate receptor 2 gene (ITPR2) was associated with ALS (p=0.012 after Bonferroni correction). Combined analysis of all samples (1337 patients and 1356 controls) confirmed this association (p=3.28x10(-6), odds ratio 1.58, 95% CI 1.30-1.91). ITPR2 expression was greater in the peripheral blood of 126 ALS patients than in that of 126 healthy controls (p=0.00016). INTERPRETATION Genetic variation in ITPR2 is a susceptibility factor for ALS. ITPR2 is a strong candidate susceptibility gene for ALS because it is involved in glutamate-mediated neurotransmission, is one of the main regulators of intracellular calcium concentrations, and has an important role in apoptosis.


Human Molecular Genetics | 2009

Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration

Claire L. Simpson; Robin Lemmens; Katarzyna Miskiewicz; Wendy J. Broom; Valerie K. Hansen; Paul W.J. van Vught; John Landers; Peter Sapp; Ludo Van Den Bosch; Joanne Knight; Benjamin M. Neale; Martin Turner; Jan H. Veldink; Roel A. Ophoff; Vineeta Tripathi; Ana Beleza; Meera N. Shah; Petroula Proitsi; Annelies Van Hoecke; Peter Carmeliet; H. Robert Horvitz; P. Nigel Leigh; Christopher Shaw; Leonard H. van den Berg; Pak Sham; John Powell; Patrik Verstreken; Robert H. Brown; Wim Robberecht; Ammar Al-Chalabi

Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both candidate gene and genome-wide studies, but the genetic causes remain largely unknown. We have performed two independent parallel studies, both implicating the RNA polymerase II component, ELP3, in axonal biology and neuronal degeneration. In the first, an association study of 1884 microsatellite markers, allelic variants of ELP3 were associated with ALS in three human populations comprising 1483 people (P = 1.96 × 10−9). In the second, an independent mutagenesis screen in Drosophila for genes important in neuronal communication and survival identified two different loss of function mutations, both in ELP3 (R475K and R456K). Furthermore, knock down of ELP3 protein levels using antisense morpholinos in zebrafish embryos resulted in dose-dependent motor axonal abnormalities [Pearson correlation: −0.49, P = 1.83 × 10−12 (start codon morpholino) and −0.46, P = 4.05 × 10−9 (splice-site morpholino), and in humans, risk-associated ELP3 genotypes correlated with reduced brain ELP3 expression (P = 0.01). These findings add to the growing body of evidence implicating the RNA processing pathway in neurodegeneration and suggest a critical role for ELP3 in neuron biology and of ELP3 variants in ALS.


Nature Medicine | 2012

EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans

Annelies Van Hoecke; Lies Schoonaert; Robin Lemmens; Mieke Timmers; Kim Staats; Angela S. Laird; Elke Peeters; Thomas Philips; An Goris; Bénédicte Dubois; Peter Andersen; Ammar Al-Chalabi; Vincent Thijs; Ann M. Turnley; Paul W.J. van Vught; Jan H. Veldink; Orla Hardiman; Ludo Van Den Bosch; Paloma Gonzalez-Perez; Philip Van Damme; Robert H. Brown; Leonard H. van den Berg; Wim Robberecht

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Disease onset and progression are variable, with survival ranging from months to decades. Factors underlying this variability may represent targets for therapeutic intervention. Here, we have screened a zebrafish model of ALS and identified Epha4, a receptor in the ephrin axonal repellent system, as a modifier of the disease phenotype in fish, rodents and humans. Genetic as well as pharmacological inhibition of Epha4 signaling rescues the mutant SOD1 phenotype in zebrafish and increases survival in mouse and rat models of ALS. Motor neurons that are most vulnerable to degeneration in ALS express higher levels of Epha4, and neuromuscular re-innervation by axotomized motor neurons is inhibited by the presence of Epha4. In humans with ALS, EPHA4 expression inversely correlates with disease onset and survival, and loss-of-function mutations in EPHA4 are associated with long survival. Furthermore, we found that knockdown of Epha4 also rescues the axonopathy induced by expression of mutant TAR DNA-binding protein 43 (TDP-43), another protein causing familial ALS, and the axonopathy induced by knockdown of survival of motor neuron 1, a model for spinomuscular atrophy. This suggests that Epha4 generically modulates the vulnerability of (motor) neurons to axonal degeneration and may represent a new target for therapeutic intervention.


Annals of Neurology | 2011

Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis

Michael A. van Es; Helenius J. Schelhaas; Paul W.J. van Vught; Nicola Ticozzi; Peter Andersen; Ewout J.N. Groen; Claudia Schulte; Hylke M. Blauw; Max Koppers; Frank P. Diekstra; Katsumi Fumoto; Ashley Lyn Leclerc; Pamela Keagle; Bastiaan R. Bloem; H. Scheffer; Bart F L Van Nuenen; Marka van Blitterswijk; Wouter van Rheenen; Anne Marie Wills; Patrick Lowe; Guo-fu Hu; Wenhao Yu; Hiroko Kishikawa; David Wu; Rebecca D. Folkerth; Claudio Mariani; Stefano Goldwurm; Gianni Pezzoli; Philip Van Damme; Robin Lemmens

Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.


Stroke | 2007

Lipoprotein (a) and Stroke A Meta-Analysis of Observational Studies

Barbara Smolders; Robin Lemmens; Vincent Thijs

Background and Purpose— The relationship between elevated lipoprotein (a) levels[Lp(a)] and stroke is controversial. We systematically reviewed the literature to determine whether Lp(a) is a risk factor for stroke. Methods— We searched MEDLINE (1966 to 2006), EMBASE (1974 to 2006), and Google scholar for articles on Lp(a) and cerebrovascular disease. From potentially relevant references retrieved, we excluded uncontrolled studies, studies of children with stroke, studies investigating carotid atherosclerosis, and studies lacking adequate data. Results— Thirty-one studies comprising 56 010 subjects with >4609 stroke events met all inclusion criteria and were included in the meta-analysis. In case-control studies (n=23 with 2600 strokes) unadjusted mean Lp(a) was higher in stroke patients (standardized mean difference, 0.39; 95% CI, 0.23 to 0.54) and was more frequently abnormally elevated (OR, 2.39; 95% CI, 1.57 to 3.63). Sensitivity analysis and meta-regression did not find any influence of study design, measurement period of Lp(a) in relationship to stroke episode, subtype, age, and sex to explain the substantial heterogeneity between studies (I2=83.7%; P<0.001). There was no evidence of publication bias. In nested case-control studies (n=3 with 364 strokes) Lp(a) was not a risk factor for incident stroke (OR, 1.04; 95% CI, 0.6 to 1.8). In prospective cohort studies (n=5 with >1645 strokes), incident stroke was more frequent in patients in the highest tertile of Lp(a) distribution compared with the lowest tertile of Lp(a) (RR, 1.22; 95% CI, 1.04 to 1.43). There was no publication bias or heterogeneity in the prospective studies (I2=0.00%; P=0.67). Conclusion— This meta-analysis suggests that elevated Lp(a) is a risk factor for incident stroke.


Stroke | 2010

Microbleeds and the Risk of Recurrent Stroke

Vincent Thijs; Robin Lemmens; Christophe Schoofs; Astrid Görner; Philip Van Damme; Maarten Schrooten; Philippe Demaerel

Background and Purpose— We studied the risk of recurrent cerebrovascular events in patients who had a transient ischemic attack or ischemic stroke and who had evidence of microbleeds on MRI. Methods— A prospective follow-up study was performed on hospitalized patients who were at least 50 years old with a transient ischemic attack or an ischemic stroke. The presence and number of microbleeds were assessed on gradient echo MRI and the presence of white matter disease on fluid-attenuated inversion recovery imaging using a semiquantitative scale. Patients were followed up by phone every 6 months. End points were intracerebral hemorrhage, ischemic stroke, and unclassified stroke. Cerebral events were adjudicated by 2 independent neurologists blinded to the presence of microbleeds. Cox regression analysis was performed. Results— A total of 487 patients with a mean age of 72 years were followed up for a median of 2.2 years (25th to 75th percentile 1.9 to 2.7 years). Microbleeds were identified in 129 patients (25.6%). Two patients developed intracerebral hemorrhage during follow-up, 32 patients developed recurrent ischemic stroke, and 3 patients had unclassified strokes. Microbleeds were not independent predictors of recurrent stroke (P=0.2) or intracerebral hemorrhage (P=0.43). Lobar microbleeds or combined lobar and deep microbleeds were independently associated with recurrent stroke (P=0.018). Conclusion— In this European cohort, patients with microbleeds who have had cerebral ischemia have a higher risk of developing new ischemic strokes than of intracerebral hemorrhage. Lobar microbleeds or combined lobar and deep microbleeds might be independent predictors of recurrent stroke.

Collaboration


Dive into the Robin Lemmens's collaboration.

Top Co-Authors

Avatar

Vincent Thijs

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Wim Robberecht

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ludo Van Den Bosch

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anke Wouters

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Van Damme

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

An Goris

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Patrick Dupont

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge