Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin M. Meyers is active.

Publication


Featured researches published by Robin M. Meyers.


Nature Biotechnology | 2015

Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases

Richard L. Frock; Jiazhi Hu; Robin M. Meyers; Yu-Jui Ho; Erina Kii; Frederick W. Alt

Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification–mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide.


Cancer Discovery | 2016

Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting

Andrew J. Aguirre; Robin M. Meyers; Barbara A. Weir; Francisca Vazquez; Cheng-Zhong Zhang; Uri Ben-David; April Cook; Gavin Ha; William F. Harrington; Mihir Doshi; Maria Kost-Alimova; Stanley Gill; Han Xu; Levi D. Ali; Guozhi Jiang; Sasha Pantel; Yenarae Lee; Amy Goodale; Andrew D. Cherniack; Coyin Oh; Gregory V. Kryukov; Glenn S. Cowley; Levi A. Garraway; Kimberly Stegmaier; Charles W. M. Roberts; Todd R. Golub; Matthew Meyerson; David E. Root; Aviad Tsherniak; William C. Hahn

UNLABELLED The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. SIGNIFICANCE We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803.


Nature | 2013

Microbial colonization influences early B-lineage development in the gut lamina propria.

Duane R. Wesemann; Andrew J. Portuguese; Robin M. Meyers; Michael P. Gallagher; Kendra Cluff-Jones; Jennifer M. Magee; Rohit A. Panchakshari; Scott J. Rodig; Thomas B. Kepler; Frederick W. Alt

The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy (IgH) and light (IgL) chain variable region exons from germline gene segments to generate primary antibody repertoires. IgH V(D)J assembly occurs in progenitor (pro-) B cells followed by that of IgL in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR). Rag expression can continue in immature B cells, allowing continued Igκ V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity. This ‘receptor editing’ process, which can also lead to Igλ V(D)J recombination and expression, provides a mechanism whereby antigen encounter at the Rag-expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of Rag-expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing, Rag-expressing LP B-lineage cells have similar VH repertoires, but significantly different Vκ repertoires, compared to those of Rag2-expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of Igλ-expressing versus Igκ-expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.


Cell | 2016

Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural Stem/Progenitor Cells

Pei-Chi Wei; Amelia N. Chang; Jennifer Kao; Zhou Du; Robin M. Meyers; Frederick W. Alt; Bjoern Schwer

Repair of DNA double-strand breaks (DSBs) by non-homologous end joining is critical for neural development, and brain cells frequently contain somatic genomic variations that might involve DSB intermediates. We now use an unbiased, high-throughput approach to identify genomic regions harboring recurrent DSBs in primary neural stem/progenitor cells (NSPCs). We identify 27 recurrent DSB clusters (RDCs), and remarkably, all occur within gene bodies. Most of these NSPC RDCs were detected only upon mild, aphidicolin-induced replication stress, providing a nucleotide-resolution view of replication-associated genomic fragile sites. The vast majority of RDCs occur in long, transcribed, and late-replicating genes. Moreover, almost 90% of identified RDC-containing genes are involved in synapse function and/or neural cell adhesion, with a substantial fraction also implicated in tumor suppression and/or mental disorders. Our characterization of NSPC RDCs reveals a basis of gene fragility and suggests potential impacts of DNA breaks on neurodevelopment and neural functions.


Nature | 2015

Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching

Junchao Dong; Rohit A. Panchakshari; Tingting Zhang; Yu Zhang; Jiazhi Hu; Sabrina A. Volpi; Robin M. Meyers; Yu-Jui Ho; Zhou Du; Davide F. Robbiani; Fei-Long Meng; Monica Gostissa; Michel C. Nussenzweig; John P. Manis; Frederick W. Alt

During B-cell development, RAG endonuclease cleaves immunoglobulin heavy chain (IgH) V, D, and J gene segments and orchestrates their fusion as deletional events that assemble a V(D)J exon in the same transcriptional orientation as adjacent Cμ constant region exons. In mice, six additional sets of constant region exons (CHs) lie 100–200 kilobases downstream in the same transcriptional orientation as V(D)J and Cμ exons. Long repetitive switch (S) regions precede Cμ and downstream CHs. In mature B cells, class switch recombination (CSR) generates different antibody classes by replacing Cμ with a downstream CH (ref. 2). Activation-induced cytidine deaminase (AID) initiates CSR by promoting deamination lesions within Sμ and a downstream acceptor S region; these lesions are converted into DNA double-strand breaks (DSBs) by general DNA repair factors. Productive CSR must occur in a deletional orientation by joining the upstream end of an Sμ DSB to the downstream end of an acceptor S-region DSB. However, the relative frequency of deletional to inversional CSR junctions has not been measured. Thus, whether orientation-specific joining is a programmed mechanistic feature of CSR as it is for V(D)J recombination and, if so, how this is achieved is unknown. To address this question, we adapt high-throughput genome-wide translocation sequencing into a highly sensitive DSB end-joining assay and apply it to endogenous AID-initiated S-region DSBs in mouse B cells. We show that CSR is programmed to occur in a productive deletional orientation and does so via an unprecedented mechanism that involves in cis Igh organizational features in combination with frequent S-region DSBs initiated by AID. We further implicate ATM-dependent DSB-response factors in enforcing this mechanism and provide an explanation of why CSR is so reliant on the 53BP1 DSB-response factor.


Nature Genetics | 2017

Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells

Robin M. Meyers; Jordan Bryan; James M McFarland; Barbara A. Weir; Ann E. Sizemore; Han Xu; Neekesh V. Dharia; Phillip G Montgomery; Glenn S. Cowley; Sasha Pantel; Amy Goodale; Yenarae Lee; Levi D. Ali; Guozhi Jiang; Rakela Lubonja; William F. Harrington; Matthew R. Strickland; Ting Wu; Derek C Hawes; Victor A Zhivich; Meghan R Wyatt; Zohra Kalani; Jaime J Chang; Michael Okamoto; Kimberly Stegmaier; Todd R. Golub; Jesse S. Boehm; Francisca Vazquez; David E. Root; William C. Hahn

The CRISPR–Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number–amplified regions. We developed CERES, a computational method to estimate gene-dependency levels from CRISPR–Cas9 essentiality screens while accounting for the copy number–specific effect. In our efforts to define a cancer dependency map, we performed genome-scale CRISPR–Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this data set. We found that CERES decreased false-positive results and estimated sgRNA activity for both this data set and previously published screens performed with different sgRNA libraries. We further demonstrate the utility of this collection of screens, after CERES correction, for identifying cancer-type-specific vulnerabilities.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells

Bjoern Schwer; Pei-Chi Wei; Amelia N. Chang; Jennifer Kao; Zhou Du; Robin M. Meyers; Frederick W. Alt

Significance DNA double-strand breaks (DSBs) occur in all cells, including neural stem/progenitor cells (NSPCs) that give rise to the brain. We previously found that developing neural cells lacking a major DSB end-joining pathway are subject to widespread death. Because DSBs may result from gene transcription, we assayed for DSBs near active transcription start sites (TSSs) genome-wide in NSPCs. DSBs occur near TSSs of highly transcribed genes involved in general cellular processes but occur less often near neural-specific TSSs. These TSS-associated DSBs can translocate to other DSBs by both the normal and alternative DSB repair pathways. We report similar findings in B lymphocytes, suggesting that highly transcribed genes involved in general cellular processes are subject to TSS-associated DSBs in divergent cell types. High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)–deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.


Proceedings of the National Academy of Sciences of the United States of America | 2014

IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances.

Monica Gostissa; Bjoern Schwer; Amelia Chang; Junchao Dong; Robin M. Meyers; Gregory T. Marecki; Vivian W. Choi; Roberto Chiarle; Ali A. Zarrin; Frederick W. Alt

Significance During an immune response, B lymphocytes generate different classes of antibodies better suited to protect against particular pathogens by making two chromosomal cuts that are joined to replace one type of antibody gene with a different one. These cuts happen in widely separated segments of the chromosome that must be physically adjacent to be joined. We have asked how this happens. The surprising answer is that genes and gene segments lying certain distances apart on any chromosome may actually be packaged such that both are frequently touching or nearly touching and, if broken, can be efficiently joined by general processes that repair breaks in all our genes. The joining mechanisms we describe also may contribute to genetic deletions in cancers. Antibody class switch recombination (CSR) in B lymphocytes joins two DNA double-strand breaks (DSBs) lying 100–200 kb apart within switch (S) regions in the immunoglobulin heavy-chain locus (IgH). CSR-activated B lymphocytes generate multiple S-region DSBs in the donor Sμ and in a downstream acceptor S region, with a DSB in Sμ being joined to a DSB in the acceptor S region at sufficient frequency to drive CSR in a large fraction of activated B cells. Such frequent joining of widely separated CSR DSBs could be promoted by IgH-specific or B-cell–specific processes or by general aspects of chromosome architecture and DSB repair. Previously, we found that B cells with two yeast I-SceI endonuclease targets in place of Sγ1 undergo I-SceI–dependent class switching from IgM to IgG1 at 5–10% of normal levels. Now, we report that B cells in which Sγ1 is replaced with a 28 I-SceI target array, designed to increase I-SceI DSB frequency, undergo I-SceI–dependent class switching at almost normal levels. High-throughput genome-wide translocation sequencing revealed that I-SceI–generated DSBs introduced in cis at Sμ and Sγ1 sites are joined together in T cells at levels similar to those of B cells. Such high joining levels also occurred between I-SceI–generated DSBs within c-myc and I-SceI– or CRISPR/Cas9-generated DSBs 100 kb downstream within Pvt1 in B cells or fibroblasts, respectively. We suggest that CSR exploits a general propensity of intrachromosomal DSBs separated by several hundred kilobases to be frequently joined together and discuss the relevance of this finding for recurrent interstitial deletions in cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes

Jiazhi Hu; Suprawee Tepsuporn; Robin M. Meyers; Monica Gostissa; Frederick W. Alt

Significance Antibody production depends on a cut-and-paste genomic rearrangement termed “V(D)J recombination” that takes place during early B-lymphocyte development. Mistakes in V(D)J recombination can lead to chromosomal translocations that activate oncogenes. Such mistakes usually lead to immature B-cell cancers. However, in the absence of the ATM kinase, mice can develop mature B-cell tumors with translocations resulting from V(D)J recombination-associated breaks. Normally persistent chromosome breaks activate cellular checkpoints that eliminate cells harboring such dangerous lesions. The current studies reveal that, in the absence of ATM, V(D)J recombination-generated breaks are cycled into aberrant chromosomes, termed “dicentrics,” that avoid checkpoints and are propagated through development, generating new breaks and translocations in mature B cells. Mature IgM+ B-cell lymphomas that arise in certain ataxia telangiectasia-mutated (ATM)-deficient compound mutant mice harbor translocations that fuse V(D)J recombination-initiated IgH double-strand breaks (DSBs) on chromosome 12 to sequences downstream of c-myc on chromosome 15, generating dicentric chromosomes and c-myc amplification via a breakage-fusion-bridge mechanism. As V(D)J recombination DSBs occur in developing progenitor B cells in the bone marrow, we sought to elucidate a mechanism by which such DSBs contribute to oncogenic translocations/amplifications in mature B cells. For this purpose, we applied high-throughput genome-wide translocation sequencing to study the fate of introduced c-myc DSBs in splenic IgM+ B cells stimulated for activation-induced cytidine deaminase (AID)-dependent IgH class switch recombination (CSR). We found frequent translocations of c-myc DSBs to AID-initiated DSBs in IgH switch regions in wild-type and ATM-deficient B cells. However, c-myc also translocated frequently to newly generated DSBs within a 35-Mb region downstream of IgH in ATM-deficient, but not wild-type, CSR-activated B cells. Moreover, we found such DSBs and translocations in activated B cells that did not express AID or undergo CSR. Our findings indicate that ATM deficiency leads to formation of chromosome 12 dicentrics via recombination-activating gene-initiated IgH DSBs in progenitor B cells and that these dicentrics can be propagated developmentally into mature B cells where they generate new DSBs downstream of IgH via breakage-fusion-bridge cycles. We propose that dicentrics formed by joining V(D)J recombination–associated IgH DSBs to DSBs downstream of c-myc in ATM-deficient B lineage cells similarly contribute to c-myc amplification and mature B-cell lymphomas.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies

Joyce K. Hwang; Chong Wang; Zhou Du; Robin M. Meyers; Thomas B. Kepler; Donna Neuberg; Peter D. Kwong; John R. Mascola; M. Gordon Joyce; Mattia Bonsignori; Barton F. Haynes; Leng-Siew Yeap; Frederick W. Alt

Significance B lymphocytes produce antibodies that provide protection from infections. Such antibodies evolve from precursors via pathogen-driven affinity maturation. Affinity maturation involves introduction of somatic hypermutations (SHMs) into antibody genes followed by selection of B lymphocytes producing antibodies that better neutralize the pathogen. Some HIV-1–infected humans develop broadly neutralizing antibodies (bnAbs) that recognize diverse HIV-1 strains. VRC01 is a potent bnAb that binds a crucial portion of HIV-1. Development of vaccine strategies to elicit VRC01-class antibodies is difficult due to the high SHM levels associated with their maturation. We report contributions of sequence-intrinsic mechanisms to the SHM patterns of a VRC01-class bnAb and its precursors in mice. Our findings provide insights into roles of antibody gene sequences in guiding bnAb maturation. Variable regions of Ig chains provide the antigen recognition portion of B-cell receptors and derivative antibodies. Ig heavy-chain variable region exons are assembled developmentally from V, D, J gene segments. Each variable region contains three antigen-contacting complementarity-determining regions (CDRs), with CDR1 and CDR2 encoded by the V segment and CDR3 encoded by the V(D)J junction region. Antigen-stimulated germinal center (GC) B cells undergo somatic hypermutation (SHM) of V(D)J exons followed by selection for SHMs that increase antigen-binding affinity. Some HIV-1–infected human subjects develop broadly neutralizing antibodies (bnAbs), such as the potent VRC01-class bnAbs, that neutralize diverse HIV-1 strains. Mature VRC01-class bnAbs, including VRC-PG04, accumulate very high SHM levels, a property that hinders development of vaccine strategies to elicit them. Because many VRC01-class bnAb SHMs are not required for broad neutralization, high overall SHM may be required to achieve certain functional SHMs. To elucidate such requirements, we used a V(D)J passenger allele system to assay, in mouse GC B cells, sequence-intrinsic SHM-targeting rates of nucleotides across substrates representing maturation stages of human VRC-PG04. We identify rate-limiting SHM positions for VRC-PG04 maturation, as well as SHM hotspots and intrinsically frequent deletions associated with SHM. We find that mature VRC-PG04 has low SHM capability due to hotspot saturation but also demonstrate that generation of new SHM hotspots and saturation of existing hotspot regions (e.g., CDR3) does not majorly influence intrinsic SHM in unmutated portions of VRC-PG04 progenitor sequences. We discuss implications of our findings for bnAb affinity maturation mechanisms.

Collaboration


Dive into the Robin M. Meyers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick W. Alt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge