Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin R. Hodges is active.

Publication


Featured researches published by Robin R. Hodges.


International Review of Cytology-a Survey of Cell Biology | 2003

Regulatory pathways in lacrimal gland epithelium.

Robin R. Hodges; Darlene A. Dartt

Tears are a complex fluid that continuously cover the exposed surface of the eye, namely the cornea and conjunctiva. Tears are secreted in response to the multitude of environmental stresses that can harm the ocular surface such as cold, mechanical stimulation, physical injury, noxious chemicals, as well as infections from various organisms. Tears also provide nutrients and remove waste from cells of the ocular surface. Because of the varied function of tears, tears are complex and are secreted by several different tissues. Tear secretion is under tight neural control allowing tears to respond rapidly to changing environmental conditions. The lacrimal gland is the main contributor to the aqueous portion of the tear film and the regulation of secretion from this gland has been well studied. Despite multiple redundencies in pathways to stimulate secretion from the lacrimal gland, defects can occur resulting in dry eye syndromes. These diseases can have deleterious effects on vision. In this review, we summarize the latest information regarding the regulatory pathways, which control secretion from the lacrimal gland, and their roles in the pathogenesis of dry eye syndromes.


Journal of Immunology | 2011

Conjunctival Goblet Cell Secretion Stimulated by Leukotrienes Is Reduced by Resolvins D1 and E1 To Promote Resolution of Inflammation

Darlene A. Dartt; Robin R. Hodges; Dayu Li; Marie A. Shatos; Kameran Lashkari; Charles N. Serhan

The conjunctiva is a mucous membrane that covers the sclera and lines the inside of the eyelids. Throughout the conjunctiva are goblet cells that secrete mucins to protect the eye. Chronic inflammatory diseases such as allergic conjunctivitis and early dry eye lead to increased goblet cell mucin secretion into tears and ocular surface disease. The purpose of this study was to determine the actions of the inflammatory mediators, the leukotrienes and the proresolution resolvins, on secretion from cultured rat and human conjunctival goblet cells. We found that both cysteinyl leukotriene (CysLT) receptors, CysLT1 and CysLT2, were present in rat conjunctiva and in rat and human cultured conjunctival goblet cells. All leukotrienes LTB4, LTC4, LTD4, and LTE4, as well as PGD2, stimulated goblet cell secretion in rat goblet cells. LTD4 and LTE4 increased the intracellular Ca2+ concentration ([Ca2+]i), and LTD4 activated ERK1/2. The CysLT1 receptor antagonist MK571 significantly decreased LTD4-stimulated rat goblet cell secretion and the increase in [Ca2+]i. Resolvins D1 (RvD1) and E1 (RvE1) completely reduced LTD4-stimulated goblet cell secretion in cultured rat goblet cells. LTD4-induced secretion from human goblet cells was blocked by RvD1. RvD1 and RvE1 prevented LTD4- and LTE4-stimulated increases in [Ca2+]i, as well as LTD4 activation of ERK1/2. We conclude that cysteinyl leukotrienes stimulate conjunctival goblet cell mucous secretion with LTD4 using the CysLT1 receptor. Stimulated secretion is terminated by preventing the increase in [Ca2+]i and activation of ERK1/2 by RvD1 and RvE1.


Experimental Eye Research | 2013

Tear Film Mucins: Front Line Defenders of the Ocular Surface; Comparison with Airway and Gastrointestinal Tract Mucins

Robin R. Hodges; Darlene A. Dartt

The ocular surface including the cornea and conjunctiva and its overlying tear film are the first tissues of the eye to interact with the external environment. The tear film is complex containing multiple layers secreted by different glands and tissues. Each layer contains specific molecules and proteins that not only maintain the health of the cells on the ocular surface by providing nourishment and removal of waste products but also protect these cells from environment. A major protective mechanism that the corneal and conjunctival cells have developed is secretion of the innermost layer of the tear film, the mucous layer. Both the cornea and conjunctiva express membrane spanning mucins, whereas the conjunctiva also produces soluble mucins. The mucins present in the tear film serve to maintain the hydration of the ocular surface and to provide lubrication and anti-adhesive properties between the cells of the ocular surface and conjunctiva during the blink. A third function is to contribute to the epithelial barrier to prevent pathogens from binding to the ocular surface. This review will focus on the different types of mucins produced by the corneal and conjunctival epithelia. Also included in this review will be a presentation of the structure of mucins, regulation of mucin production, role of mucins in ocular surface diseases, and the differences in mucin production by the ocular surface, airways and gastrointestinal tract.


Mucosal Immunology | 2013

Resolvin D1 and Aspirin-Triggered Resolvin D1 Regulate Histamine-stimulated Conjunctival Goblet Cell Secretion

Dayu Li; Robin R. Hodges; Jianwei Jiao; Richard B. Carozza; Marie A. Shatos; Nan Chiang; Charles N. Serhan; Darlene A. Dartt

Resolution of inflammation is an active process mediated by pro-resolution lipid mediators. As resolvin (Rv) D1 is produced in the cornea, pro-resolution mediators could be effective in regulating inflammatory responses to histamine in allergic conjunctivitis. Two key mediators of resolution are the D-series resolvins RvD1 or aspirin-triggered RvD1 (AT-RvD1). We used cultured conjunctival goblet cells to determine whether histamine actions can be terminated during allergic responses. We found cross-talk between two types of G protein-coupled receptors (GPRs), as RvD1 interacts with its receptor GPR32 to block histamine-stimulated H1 receptor increases in intracellular [Ca2+] ([Ca2+]i) preventing H1 receptor-mediated responses. In human and rat conjunctival goblet cells, RvD1 and AT-RvD1 each block histamine-stimulated secretion by preventing its increase in [Ca2+]i and activation of extracellular regulated–protein kinase (ERK)1/2. We suggest that D-series resolvins regulate histamine responses in the eye and offer new treatment approaches for allergic conjunctivitis or other histamine-dependent pathologies.


Experimental Eye Research | 2012

Signaling pathways used by EGF to stimulate conjunctival goblet cell secretion

Robin R. Hodges; Jeffrey A. Bair; Richard B. Carozza; Dayu Li; Marie A. Shatos; Darlene A. Dartt

The purpose of this study was to identify the signaling pathways that epidermal growth factor (EGF) uses to stimulate mucin secretion from cultured rat conjunctival goblet cells and to compare the pathways used by EGF with those used by the known secretagogue muscarinic, cholinergic agonists. To this end, goblet cells from rat conjunctiva were grown in culture using RPMI media. For immunofluorescence experiments, antibodies against EGF receptor (EGFR) and ERK 2 as well as muscarinic receptors (M(1)AchR, M(2)AchR, and M(3)AchR) were used, and the cells viewed by fluorescence microscopy. Intracellular [Ca(2+)] ([Ca(2+)](i)) was measured using fura 2/AM. Glycoconjugate secretion was determined after cultured goblet cells were preincubated with inhibitors, and then stimulated with EGF or the cholinergic agonist carbachol (Cch). Goblet cell secretion was measured using an enzyme-linked lectin assay with UEA-I or ELISA for MUC5AC. In cultured goblet cells EGF stimulated an increase in [Ca(2+)](i) in a concentration-dependent manner. EGF-stimulated increase in [Ca(2+)](i) was blocked by inhibitors of the EGF receptor and removal of extracellular Ca(2+). Inhibitors against the EGFR and ERK 1/2 blocked EGF-stimulated mucin secretion. In addition, cultured goblet cells expressed M(1)AchR, M(2)AchR, and M(3)AchRs. Cch-stimulated increase in [Ca(2+)](i) was blocked by inhibitors for the M(1)AchRs, matrix metalloproteinases, and EGF receptors. Inhibitors against the EGF receptor and ERK 1/2 also blocked Cch-stimulated mucin secretion. We conclude that in conjunctival goblet cells, EGF itself increases [Ca(2+)](i) and activates ERK 1/2 to stimulate mucin secretion. EGF-stimulated secretion is dependent on extracellular Ca(2+). This mechanism of action is similar to cholinergic agonists that use muscarinic receptors to transactivate the EGF receptor, increase [Ca(2+)](i), and activate ERK 1/2 leading to an increase in mucin secretion.


Investigative Ophthalmology & Visual Science | 2012

Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland.

Marie A. Shatos; Linda Haugaard-Kedstrom; Robin R. Hodges; Darlene A. Dartt

PURPOSE The purpose of this study was to investigate the presence of progenitor cells in the uninjured, adult rat lacrimal gland (LG). METHODS The presence of progenitor cells was examined in LG sections from male rats using antibodies against selected stem cell markers and α-smooth muscle actin (SMA), which marks myoepithelial cells (MECs), by immunofluorescence microscopy (IF). Small, immature cells were isolated after digestion of LG with collagenase and culture in RPMI 1640 for 2 weeks. Immature cells were examined for expression of stem cell markers by IF. Immature cell were grown in neuronal, epithelial, and myoepithelial cell media, and examined by light morphology and IF using antibodies to markers of different cell lineages. RESULTS In the intact LGs, MECs expressed the stem cell markers nestin, Musashi 1, ABCG2, Pax6, Chx 10, ΔN p63, and Sox 2. All markers colocalized with SMA. Isolated immature cells contained Ki-67, nestin, Musashi 1, Pax 6, and CHX 10. In neuronal media, immature cells differentiated and assumed a neuronal cell morphology expressing neurofilament 200. In media for human corneal endothelial cells, immature cells differentiated, assumed cobblestone morphology, and labeled with the epithelial marker AE1/AE3. In RPMI media immature cells differentiated into cells with MEC-like morphology, and expressed the MEC markers SMA, α-actinin, adenylate cyclase II, and vimentin. CONCLUSIONS We conclude that uninjured, adult LG contains progenitor cells that may be MECs, which can be isolated and differentiated into multiple lineages.


The Journal of Membrane Biology | 1997

Immunolocalization of Lacrimal Gland PKC Isoforms. Effect of Phorbol Esters and Cholinergic Agonists on Their Cellular Distribution

Driss Zoukhri; Robin R. Hodges; S. Willert; Darlene A. Dartt

Abstract. In previous studies, we showed that lacrimal gland acini express three isoforms of protein kinase C (PKC): PKCα,-δ, and -ε. In the present study, we report the identification of two other PKC isoforms, namely PKCμ and -ι/λ. Using immunofluorescence techniques, we showed that these isoforms are differentially located. PKCα and -μ showed the most prominent membrane localization, whereas PKCδ, -ε and -ι/λ were mainly cytosolic. Using cell fractionation and western blotting techniques, we showed that the phorbol ester, phorbol 12, 13-dibutyrate (PdBu, 10−6m), translocated all PKC isoforms, except PKCι/λ, from the soluble fraction into the particulate fraction. The effect was maximum at 5 min and persisted at 10 min. PKCε was the most responsive to PdBu reaching almost maximal translocation at a PdBu concentration as low as 10−9m. The cholinergic agonist, carbachol (10−5 and 10−3m), induced translocation which was transient for PKCδ, and -μ, but persisted for 10 min for PKCε. Carbachol did not translocate PKCα and, like PdBu, did not translocate PKCι/λ. We concluded that lacrimal gland PKC isoforms are differentially localized and that they translocate differentially in response to phorbol esters and cholinergic agonists.


FEBS Letters | 1994

Role of protein kinase C in cholinergic stimulation of lacrimal gland protein secretion

Driss Zoukhri; Robin R. Hodges; Deanna M. Dicker; Darlene A. Dartt

The purpose of this study was to determine the role of protein kinase C (PKC) isozymes in carbachol‐induced protein secretion in the lacrimal gland. Three isoforms of PKC are present in rat lacrimal gland: PKC‐α, ‐δ and ‐g3. Carbachol translocated PKC‐ε during 5 s incubation. Pretreatment with PdBu for 0 to 4 h down‐regulated PKC‐α by 31% at 20 min, PKC‐ε by 36% at 2 h, and PKC‐δ by 37% at 4 h. A 2 h phorbol ester treatment inhibited carbachol‐induced secretion completely at 1 min and partially at 5, and 20 min, but did not alter the carbachol‐induced increase in the intracellular [Ca2+]. We conclude that PKC‐α and ‐g3, but not PKC‐δ, are implicated in cholinergic agonist‐induced protein secretion in rat lacrimal gland.


Investigative Ophthalmology & Visual Science | 2012

Role of Histamine and Its Receptor Subtypes in Stimulation of Conjunctival Goblet Cell Secretion

Densen Hayashi; Dayu Li; Chisato Hayashi; Marie A. Shatos; Robin R. Hodges; Darlene A. Dartt

PURPOSE The purpose of this study was to determine the effect of histamine and its receptors on goblet cell secretion. METHODS Cultured rat and human goblet cells were grown in RPMI 1640. Goblet cell secretion of high molecular weight glycoconjugate was measured by an enzyme-linked lectin assay. Cultured rat goblet cells were homogenized and either RNA was isolated for RT-PCR or proteins were isolated for Western blot analysis for presence of histamine receptors subtypes H₁ through H₄. The localization of these receptors was determined in rat and human goblet cells by immunofluorescence microscopy. RESULTS Histamine stimulated goblet cell secretion in a concentration- and time-dependent manner. All four histamine receptors were present in cultured rat and human goblet cells. Use of agonists specific to individual histamine receptor subtypes indicated that the rank order of agonist stimulation was H₁ = H₃ > H₄ > H₂. Using antagonists specific to individual histamine receptor subtypes determined that H₂ and H₃, but not the H₁ and H₄, antagonists, inhibited histamine-stimulated conjunctival goblet cell secretion. CONCLUSIONS Rat and human conjunctival goblet cells are a direct target of histamine, which induces secretion. All four histamine receptors are present in rat and human conjunctiva and are active in rat conjunctival goblet cells. These findings suggest that all four histamine receptor subtypes are important for conjunctival goblet cell secretion. Blockage of histamine receptor subtypes could prevent the excess mucus production associated with ocular allergy.


PLOS ONE | 2013

Staphylococcus aureus Activates the NLRP3 Inflammasome in Human and Rat Conjunctival Goblet Cells

Victoria E. McGilligan; Meredith S. Gregory-Ksander; Dayu Li; Jonathan E. Moore; Robin R. Hodges; Michael S. Gilmore; Tara Moore; Darlene A. Dartt

The conjunctiva is a moist mucosal membrane that is constantly exposed to an array of potential pathogens and triggers of inflammation. The NACHT, leucine rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) is a Nod-like receptor that can sense pathogens or other triggers, and is highly expressed in wet mucosal membranes. NLRP3 is a member of the multi-protein complex termed the NLRP3 inflammasome that activates the caspase 1 pathway, inducing the secretion of biologically active IL-1β, a major initiator and promoter of inflammation. The purpose of this study was to: (1) determine whether NLRP3 is expressed in the conjunctiva and (2) determine whether goblet cells specifically contribute to innate mediated inflammation via secretion of IL-1β. We report that the receptors known to be involved in the priming and activation of the NLRP3 inflammasome, the purinergic receptors P2X4 and P2X7 and the bacterial Toll-like receptor 2 are present and functional in conjunctival goblet cells. Toxin-containing Staphylococcus aureus (S. aureus), which activates the NLRP3 inflammasome, increased the expression of the inflammasome proteins NLRP3, ASC and pro- and mature caspase 1 in conjunctival goblet cells. The biologically active form of IL-1β was detected in goblet cell culture supernatants in response to S. aureus, which was reduced when the cells were treated with the caspase 1 inhibitor Z-YVAD. We conclude that the NLRP3 inflammasome components are present in conjunctival goblet cells. The NRLP3 inflammasome appears to be activated in conjunctival goblet cells by toxin-containing S. aureus via the caspase 1 pathway to secrete mature IL1-β. Thus goblet cells contribute to the innate immune response in the conjunctiva by activation of the NLRP3 inflammasome.

Collaboration


Dive into the Robin R. Hodges's collaboration.

Top Co-Authors

Avatar

Darlene A. Dartt

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Marie A. Shatos

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dayu Li

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles N. Serhan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge