Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin Roberts is active.

Publication


Featured researches published by Robin Roberts.


Investigative Ophthalmology & Visual Science | 2009

Retinal Ion Regulation in a Mouse Model of Diabetic Retinopathy: Natural History and the Effect of Cu/Zn Superoxide Dismutase Overexpression

Bruce A. Berkowitz; Marius Gradianu; David Bissig; Timothy S. Kern; Robin Roberts

PURPOSE To test the hypotheses that manganese-enhanced MRI (MEMRI) is useful in evaluating intraretinal ion dysregulation in wild-type (WT) and Cu/Zn superoxide dismutase (SOD1) overexpressor mice. METHODS Central intraretinal ion activity and retinal thickness were measured from high-resolution data of light- and dark-adapted WT C57BL/6 mice (to gauge MEMRI sensitivity to normal visual processing in mice) and dark-adapted diabetic and nondiabetic WT and Cu/Zn superoxide dismutase overexpressor (SOD1OE) mice. Glycated hemoglobin and retinal vascular histopathology were also determined. RESULTS In WT mice, light adaptation reduced outer retinal manganese uptake compared with that in dark adaptation; no effect on inner retinal uptake was found. In diabetic WT mice, intraretinal manganese uptake became subnormal between 1.5 and 4 months of diabetes onset and then relatively increased. Central retinal thickness, as determined with MEMRI, decreased as a function of age in diabetic mice but remained constant in control mice. Nondiabetic SOD1OE mice had normal retinal manganese uptake but subnormal retinal thickness and supernormal acellular capillary density. At 4.2 months of diabetes, SOD1OE mice had normal manganese uptake and no further thinning; acellular capillaries frequency did not increase by 9 to 10 months of diabetes. CONCLUSIONS In emerging diabetic retinopathy, MEMRI provided an analytic measure of an ionic dysregulatory pattern that was sensitive to SOD1 overexpression. The potential benefit of SOD1 overexpression to inhibit retinal abnormality in this model is limited by the retinal and vascular degeneration that develops independently of diabetes.


Investigative Ophthalmology & Visual Science | 2008

Manganese-Enhanced MRI of the DBA/2J Mouse Model of Hereditary Glaucoma

David J. Calkins; Philip J. Horner; Robin Roberts; Marius Gradianu; Bruce A. Berkowitz

PURPOSE To test the hypothesis that manganese-enhanced magnetic resonance imaging (MEMRI) is a sensitive approach for measuring of age-related ocular changes in experimental pigmentary glaucoma. METHODS Four groups of light-adapted mice were studied using MEMRI: young (2-3 months), C57BL/6 (negative controls), and DBA/2J mice and aged (10-11 months) C57BL/6 and DBA/2J mice. In all mice, eye perimeter, optic nerve head width, iridocorneal angle, ciliary body area, and total and inner retinal thickness, and a surrogate of retinal ion regulation (intraretinal uptake of manganese) were assessed from MEMRI data and compared. Axon counts were obtained from optic nerves harvested from MEMRI-assessed eyes. RESULTS As the C57BL/6 and DBA/2J mice aged, differential and significant changes in ocular perimeter, retinal thickness, iridocorneal angle, ciliary body area, and optic nerve head width were readily measured from MEMRI data (P < 0.05). In C57BL/6 mice, only inner retinal thickness and perimeter were correlated. In DBA/2J mice, ocular perimeter was correlated with total and inner retinal thickness, ciliary body area, optic nerve head width, and iridocorneal angle. Comparison of young and aged mice revealed a subnormal intraretinal manganese uptake (P < 0.05) in aged DBA/2J mice, but not in aged C57BL/6 mice. Manganese uptake did not correlate with the ocular perimeter. Axon density in the optic nerve correlated with MEMRI-measured optic nerve head width (P < 0.05). CONCLUSIONS These studies provide a baseline of noninvasive MEMRI-detectable changes associated with age in a common animal model of hereditary glaucoma that may be useful in the longitudinal evaluation of therapeutic success.


Investigative Ophthalmology & Visual Science | 2009

Quantitative mapping of ion channel regulation by visual cycle activity in rodent photoreceptors in vivo.

Bruce A. Berkowitz; Robin Roberts; Deanna A. Oleske; Myungwon Chang; Stephen Schafer; David Bissig; Marius Gradianu

PURPOSE To test the hypothesis that the extent of outer retina uptake of manganese, measured noninvasively with manganese-enhanced MRI (MEMRI), is a quantitative biomarker of photoreceptor ion channel regulation by visual cycle activity. METHODS Four groups of animals were studied: control rats adapted to three different background light intensities, dark-adapted control mice systemically pretreated with retinylamine, and dark-adapted mice with a nonsense mutation in exon 3 of the RPE65 gene (RPE65(rd12)) with and without systemic 11-cis-retinal pretreatment. In all cases, rodents were anesthetized and studied with MEMRI 4 hours after manganese administration IP. Central retinal thickness and intraretinal ion channel regulation were measured from the MEMRI data. RESULT No differences (P>0.05) in retinal thickness were noted within any arm of this study. In rats, manganese uptake was inversely proportional to the background light intensity in the outer retina but not in the inner retina. Specific inhibition at the level of RPE65 activity, either acutely with retinylamine or chronically in RPE65(rd12) mice, similarly reduced (P<0.05) outer retinal manganese uptake compared with that in control mice. In RPE65(rd12) mice, outer retinal manganese uptake returned to normal (P>0.05) after 11-cis retinal treatment. Inner retinal uptake was supernormal (P<0.05) in retinylamine-treated mice but normal in untreated or 11-cis treated RPE65(rd12) mice. CONCLUSIONS The present data support measuring the extent of manganese uptake in the outer retina as an analytic noninvasive metric of visual cycle regulation of photoreceptor ion channel activity in vivo.


Brain Research Bulletin | 2010

Toward clinical application of manganese-enhanced MRI of retinal function

Paul S. Tofts; Andre Porchia; Ying Jin; Robin Roberts; Bruce A. Berkowitz

PURPOSE The application of manganese-enhanced MRI (MEMRI) to measure retinal function in humans is unclear. To begin to address this gap, we tested the hypothesis that an FDA-approved manganese-based MRI contrast agent, Teslascan, is useful for measuring functional intraretinal ionic regulation. METHODS Anesthetized dark- or light-adapted male healthy Sprague-Dawley rats were infused for 30 min with 10 micromol/kg of Teslascan (clinically relevant dose; n = 5), 100 micromol/kg Teslascan (n = 5), or saline (n = 5). Four hours post-administration, high resolution MEMRI data were collected. Intraretinal signal intensities and enhancements were measured. Modelling was performed to estimate apparent retinal transfer constant K(i) and to determine optimal data acquisition parameters. RESULTS In light-adapted rats, intraretinal enhancements responded in a dose-response manner. In addition, in the outer retina the effect of light-adaptation was to reduce significantly Mn(2+) uptake and K(i) compared to dark-adaptation. A non-significant change was also observed in the inner retina. Modelling shows Mn(2+) plasma concentration reaching a plateau after about 2 h. Apparent K(i) values for the clinically relevant dose are 3-6 x 10(-3) min(-1), decreasing to 0.5-0.6 x 10(-3) min(-1) at the higher dose. Intraretinal signal is almost linear with K(i). Optimal TR for a spin-echo sequence is 0.4-1.4s. CONCLUSION First time evidence is presented that a clinically relevant dose and route of Teslascan can be used to measure intraretinal function. The potential for future clinical application of MEMRI in a broad range of retinopathies is high.


Investigative Ophthalmology & Visual Science | 2015

Oxidative Stress and Light-Evoked Responses of the Posterior Segment in a Mouse Model of Diabetic Retinopathy

Bruce A. Berkowitz; Edmund Michael Grady; Nikita Khetarpal; Akshar Patel; Robin Roberts

PURPOSE To test the hypothesis that in a mouse model of diabetic retinopathy, oxidative stress is linked with impaired light-evoked expansion of choroidal thickness and subretinal space (SRS). METHODS We examined nondiabetic mice (wild-type, wt) with and without administration of manganese, nondiabetic mice deficient in rod phototransduction (transducin alpha knockout; GNAT1(-/-)), and diabetic mice (untreated or treated with the antioxidant α-lipoic acid [LPA]). Magnetic resonance imaging (MRI) was used to measure light-evoked increases in choroidal thickness and the apparent diffusion coefficient (ADC) at 88% to 100% depth into the retina (i.e., the SRS layer). RESULTS Choroidal thickness values were similar (P > 0.05) between all untreated nondiabetic dark-adapted groups and increased significantly (P < 0.05) with light; this expansion was subnormal (P < 0.05) in both diabetic groups. Apparent diffusion coefficient values in the SRS layer robustly increased (P < 0.05) in a light duration-dependent manner, and this effect was independent of the presence of Mn(2+). The light-stimulated increase in ADC at the location of the SRS was absent in GNAT1(-/-) and diabetic mice (P > 0.05). In diabetic mice, the light-dependent increase in SRS ADC was significantly (P < 0.05) restored with LPA. CONCLUSIONS Apparent diffusion coefficient MRI is a sensitive method for evaluating choroid thickness and its light-evoked expansion together with phototransduction-dependent changes in the SRS layer in mice in vivo. Because ADC MRI exploits an endogenous contrast mechanism, its translational potential is promising; it can also be performed in concert with manganese-enhanced MRI (MEMRI). Our data support a link between diabetes-related oxidative stress and rod, but not choroidal, pathophysiology.


Investigative Ophthalmology & Visual Science | 2015

Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy.

Courtney R. Giordano; Robin Roberts; Kendra A. Krentz; David Bissig; Deepa Talreja; Ashok Kumar; Stanley R. Terlecky; Bruce A. Berkowitz

PURPOSE Preclinical studies have highlighted retinal oxidative stress in the pathogenesis of diabetic retinopathy. We evaluated whether a treatment designed to enhance cellular catalase reduces oxidative stress in retinal cells cultured in high glucose and in diabetic mice corrects an imaging biomarker responsive to antioxidant therapy (manganese-enhanced magnetic resonance imaging [MEMRI]). METHODS Human retinal Müller and pigment epithelial cells were chronically exposed to normal or high glucose levels and treated with a cell-penetrating derivative of the peroxisomal enzyme catalase (called CAT-SKL). Hydrogen peroxide (H2O2) levels were measured using a quantitative fluorescence-based assay. For in vivo studies, streptozotocin (STZ)-induced diabetic C57Bl/6 mice were treated subcutaneously once a week for 3 to 4 months with CAT-SKL; untreated age-matched nondiabetic controls and untreated diabetic mice also were studied. MEMRI was used to analytically assess the efficacy of CAT-SKL treatment on diabetes-evoked oxidative stress-related pathophysiology in vivo. Similar analyses were performed with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. RESULTS After catalase transduction, high glucose-induced peroxide production was significantly lowered in both human retinal cell lines. In diabetic mice in vivo, subnormal intraretinal uptake of manganese was significantly improved by catalase supplementation. In addition, in the peroxisome-rich liver of treated mice catalase enzyme activity increased and oxidative damage (as measured by lipid peroxidation) declined. On the other hand, DFMO was largely without effect in these in vitro or in vivo assays. CONCLUSIONS This proof-of-concept study raises the possibility that augmentation of catalase is a therapy for treating the retinal oxidative stress associated with diabetic retinopathy.


PLOS ONE | 2012

Evidence for diffuse central retinal edema in vivo in diabetic male Sprague Dawley rats.

Bruce A. Berkowitz; David Bissig; Yongquan Ye; Puja Valsadia; Timothy S. Kern; Robin Roberts

Background Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema. Methodology/Principal Findings In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control), whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, ‘water mobility’) were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology) were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes), and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls), MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats. Conclusions/Significance Diabetic male Sprague Dawley rats demonstrate a persistent and diffuse retinal edema in vivo, providing, for the first time, an important model for investigating its pathogenesis and treatment. These studies also validate MRI as a powerful approach for investigating mechanisms of diabetic retinal edema in future experimental and clinical investigations.


Investigative Ophthalmology & Visual Science | 2008

Ionic Dysregulatory Phenotyping of Pathologic Retinal Thinning with Manganese-Enhanced MRI

Bruce A. Berkowitz; Marius Gradianu; Stephen Schafer; Ying Jin; Andre Porchia; R. Iezzi; Robin Roberts

PURPOSE To test the hypothesis that manganese-enhanced MRI (MEMRI) provides a sensitive and robust measure of an important retinal ionic dysregulatory phenotype in pathologic retinal thinning. METHODS Four hours after intraperitoneal MnCl(2) injection, high-resolution MEMRI data were collected from overnight dark-adapted male control Sprague-Dawley and albino Royal College of Surgeons rats before (at development stage postnatal day [P] 17) and during photoreceptor degeneration (P36 and P57). In separate experiments, control rats, with and without repetitive hypoxic preconditioning, were subjected to high IOP (100 mm Hg) for 60 minutes followed by 24 hours or 7 days of reperfusion (e.g., ischemia/reperfusion). Central retinal thickness and intraretinal ion activity were measured from the MEMRI data. Histology examination was also performed to confirm retinal damage. RESULTS In two different neurodegenerative models, MEMRI revealed first-time evidence for changes (P < 0.05) in intraretinal ion regulation before and during pathologic, but not (P > 0.05) developmental, retinal thinning. This phenotype was significantly altered by a neuroprotective repetitive hypoxic preconditioning protocol. CONCLUSIONS MEMRI and a nontoxic systemic dose of MnCl(2) provided an objective, noninvasive measure of an ionic deregulatory phenotype that appears useful for improved early diagnosis and treatment prognosis in a range of neurodegenerative diseases and their treatment.


NMR in Biomedicine | 2008

Prognostic MRI biomarkers of treatment efficacy for retinopathy

Bruce A. Berkowitz; Robin Roberts

There is a pressing need for retina‐specific imaging biomarkers that robustly measure early (subclinical) changes in physiology, are linked to the histopathology responsible for vision loss, and, importantly, predict treatment efficacy. This review focuses on the following four MRI markers that we have developed and applied in preclinical and clinical settings: preretinal vitreous oxygen level (a steady‐state biomarker of inner retinal oxygen tension); leakage of contrast agent into the vitreous (a steady‐state biomarker of blood–retinal barrier permeability surface area product); change in preretinal vitreous oxygen tension during a hyperoxic provocation (a functional biomarker of vascular autoregulation); and retinal uptake of systemically administered manganese during a visual task (a functional biomarker of intraretinal ion regulation). We conclude that functional biomarkers are most promising for prognostic evaluation of treatment efficacy earlier in the course of retinopathy than is currently possible. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2016

Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels

Andrew O. Jo; Monika Lakk; Amber M. Frye; Tam T. T. Phuong; Sarah Redmon; Robin Roberts; Bruce A. Berkowitz; Oleg Yarishkin; David Križaj

Significance The secretion of aqueous humor from the ciliary body is regulated by osmotic gradients, yet the mechanism through which these cells sense these gradients is still under debate. We have identified the calcium-permeable transient receptor potential vanilloid isoform 4 (TRPV4) ion channel as critical for translating hypotonic stimuli into intracellular signals and linked the activation of this channel to a known proinflammatory lipid signaling pathway. The channel was confined to nonpigmented cells that secrete aqueous fluid and regulate intraocular pressure. Thus, activation of TRPV4 may contribute to vision through metabolic support of anterior eye tissues and regulation of osmotic and tensile homeostasis within the eye. Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Ca2+]i elevations in dissociated and intact NPE cells. Swelling had no effect on [Ca2+]i levels in pigment epithelial (PE) cells, whereas depolarization evoked [Ca2+]i elevations in both NPE and PE cells. Swelling-evoked [Ca2+]i signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 μM) and were absent in Trpv4−/− NPE. In NPE, but not PE, swelling-induced [Ca2+]i signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications.

Collaboration


Dive into the Robin Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy S. Kern

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Yasuki Ito

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Wei Zhang

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge