Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin S.B. Williams is active.

Publication


Featured researches published by Robin S.B. Williams.


Nature | 2002

A common mechanism of action for three mood-stabilizing drugs

Robin S.B. Williams; Lili Cheng; Anne W. Mudge; Adrian J. Harwood

Lithium, carbamazepine and valproic acid are effective mood-stabilizing treatments for bipolar affective disorder. The molecular mechanisms underlying the actions of these drugs and the illness itself are unknown. Berridge and colleagues suggested that inositol depletion may be the way that lithium works in bipolar affective disorder, but others have suggested that glycogen synthase kinase (GSK3) may be the relevant target. The action of valproic acid has been linked to both inositol depletion and to inhibition of histone deacetylase (HDAC). We show here that all three drugs inhibit the collapse of sensory neuron growth cones and increase growth cone area. These effects do not depend on GSK3 or HDAC inhibition. Inositol, however, reverses the effects of the drugs on growth cones, thus implicating inositol depletion in their action. Moreover, the development of Dictyostelium is sensitive to lithium and to valproic acid, but resistance to both is conferred by deletion of the gene that codes for prolyl oligopeptidase, which also regulates inositol metabolism. Inhibitors of prolyl oligopeptidase reverse the effects of all three drugs on sensory neuron growth cone area and collapse. These results suggest a molecular basis for both bipolar affective disorder and its treatment.


The EMBO Journal | 1999

Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate

Robin S.B. Williams; M. Eames; W.J. Ryves; J. Viggars; Adrian J. Harwood

The therapeutic properties of lithium ions (Li+) are well known; however, the mechanism of their action remains unclear. To investigate this problem, we have isolated Li+‐resistant mutants from Dictyostelium. Here, we describe the analysis of one of these mutants. This mutant lacks the Dictyostelium prolyl oligopeptidase gene (dpoA). We have examined the relationship between dpoA and the two major biological targets of lithium: glycogen synthase kinase 3 (GSK‐3) and signal transduction via inositol (1,4,5) trisphosphate (IP3). We find no evidence for an interaction with GSK‐3, but instead find that loss of dpoA causes an increased concentration of IP3. The same increase in IP3 is induced in wild‐type cells by a prolyl oligopeptidase (POase) inhibitor. IP3 concentrations increase via an unconventional mechanism that involves enhanced dephosphorylation of inositol (1,3,4,5,6) pentakisphosphate. Loss of DpoA activity therefore counteracts the reduction in IP3 concentration caused by Li+ treatment. Abnormal POase activity is associated with both unipolar and bipolar depression; however, the function of POase in these conditions is unclear. Our results offer a novel mechanism that links POase activity to IP3 signalling and provides further clues for the action of Li+ in the treatment of depression.


Trends in Pharmacological Sciences | 2000

Lithium therapy and signal transduction

Robin S.B. Williams; Adrian J. Harwood

Lithium is the simplest therapeutic agent available for the treatment of depression and has been used for over 100 years, yet no definitive mechanism for its effect has been established. Among the proposed mechanisms, two lithium-sensitive signal transduction pathways are active in the brain; these are mediated by glycogen synthase kinase 3beta (GSK-3beta) and inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] signalling. This article describes recent experiments in cell and developmental biology that advance our understanding of how lithium works and it presents new directions for the study of both depression and Alzheimers disease (AD).


Neuropharmacology | 2013

Seizure control by ketogenic diet-associated medium chain fatty acids

Pishan Chang; Nicole Terbach; Nick Plant; Philip E. Chen; Matthew C. Walker; Robin S.B. Williams

The medium chain triglyceride (MCT) ketogenic diet is used extensively for treating refractory childhood epilepsy. This diet increases the plasma levels of medium straight chain fatty acids. A role for these and related fatty acids in seizure control has not been established. We compared the potency of an established epilepsy treatment, Valproate (VPA), with a range of MCT diet-associated fatty acids (and related branched compounds), using in vitro seizure and in vivo epilepsy models, and assessed side effect potential in vitro for one aspect of teratogenicity, for liver toxicology and in vivo for sedation, and for a neuroprotective effect. We identify specific medium chain fatty acids (both prescribed in the MCT diet, and related compounds branched on the fourth carbon) that provide significantly enhanced in vitro seizure control compared to VPA. The activity of these compounds on seizure control is independent of histone deacetylase inhibitory activity (associated with the teratogenicity of VPA), and does not correlate with liver cell toxicity. In vivo, these compounds were more potent in epilepsy control (perforant pathway stimulation induced status epilepticus), showed less sedation and enhanced neuroprotection compared to VPA. Our data therefore implicates medium chain fatty acids in the mechanism of the MCT ketogenic diet, and highlights a related new family of compounds that are more potent than VPA in seizure control with a reduced potential for side effects. This article is part of the Special Issue entitled ‘New Targets and Approaches to the Treatment of Epilepsy’.


Eukaryotic Cell | 2007

Attenuation of Phospholipid Signaling Provides a Novel Mechanism for the Action of Valproic Acid

Xuehua Xu; Annette Müller-Taubenberger; Kathryn Adley; Nadine Pawolleck; Vivian Lee; Claudia Wiedemann; Talvinder S. Sihra; Markus Maniak; Tian Jin; Robin S.B. Williams

ABSTRACT Valproic acid (VPA) is used to treat epilepsy and bipolar disorder and to prevent migraine. It is also undergoing trials for cancer therapy. However, the biochemical and molecular biological actions of VPA are poorly understood. Using the social amoeba Dictyostelium discoideum, we show that an acute effect of VPA is the inhibition of chemotactic cell movement, a process partially dependent upon phospholipid signaling. Analysis of this process shows that VPA attenuates the signal-induced translocation of PHCrac-green fluorescent protein from cytosol to membrane, suggesting the inhibition of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) production. Direct labeling of lipids in vivo also shows a reduction in PIP and PIP2 phosphorylation following VPA treatment. We further show that VPA acutely reduces endocytosis and exocytosis—processes previously shown to be dependent upon PIP3 production. These results suggest that in Dictyostelium, VPA rapidly attenuates phospholipid signaling to reduce endocytic trafficking. To examine this effect in a mammalian model, we also tested depolarization-dependent neurotransmitter release in rat nerve terminals, and we show that this process is also suppressed upon application of VPA and an inhibitor of phosphatidylinositol 3-kinase. Although a more comprehensive analysis of the effect of VPA on lipid signaling will be necessary in mammalian systems, these results suggest that VPA may function to reduce phospholipid signaling processes and thus may provide a novel therapeutic effect for this drug.


Biochemical Society Transactions | 2004

A molecular cell biology of lithium

Robin S.B. Williams; W.J. Ryves; Emma Dalton; G Shaltiel; Galila Agam; Adrian J. Harwood

Lithium (Li(+)), a mood stabilizer, has profound effects on cultured neurons, offering an opportunity to investigate its cellular biological effects. Here we consider the effect of Li(+) and other psychotropic drugs on growth cone morphology and chemotaxis. Li(+) inhibits GSK-3 (glycogen synthase kinase-3) at a therapeutically relevant concentration. Treated cells show a number of features that arise due to GSK-3 inhibition, such as altered microtubule dynamics, axonal branching and loss of semaphorin 3A-mediated growth cone collapse. Li(+) also causes growth cones to spread; however, a similar effect is seen with two other mood stabilizers, valproic acid and carbamazepine, but without changes in microtubules or axon branching. This common effect of mood stabilizers is mediated by changes in inositol phosphate signalling, not GSK-3 activity. Given the presence of neurogenesis in the adult brain, we speculate that changes in growth cone behaviour could also occur during treatment of mental disorders.


Brain | 2016

Seizure control by decanoic acid through direct AMPA receptor inhibition

Pishan Chang; Katrin Augustin; Kim Boddum; Sophie Williams; Min Sun; John A. Terschak; Jörg D. Hardege; Philip E. Chen; Matthew C. Walker; Robin S.B. Williams

See Rogawski (doi:10.1093/awv369) for a scientific commentary on this article.  The MCT ketogenic diet, an established treatment for drug-resistant epilepsy, leads to an elevation of plasma decanoic acid and ketones. Chang et al. show that decanoic acid, rather than ketones, provides anti-seizure activity in several ex vivo rat models of epilepsy, likely through the direct inhibition of AMPA receptors.


Disease Models & Mechanisms | 2009

The mood stabiliser lithium suppresses PIP3 signalling in Dictyostelium and human cells

Jason S. King; Regina Teo; Jonathan Ryves; Jonathan V. Reddy; Owen M. Peters; Ben Orabi; Oliver Hoeller; Robin S.B. Williams; Adrian J. Harwood

SUMMARY Bipolar mood disorder (manic depression) is a major psychiatric disorder whose molecular origins are unknown. Mood stabilisers offer patients both acute and prophylactic treatment, and experimentally, they provide a means to probe the underlying biology of the disorder. Lithium and other mood stabilisers deplete intracellular inositol and it has been proposed that bipolar mood disorder arises from aberrant inositol (1,4,5)-trisphosphate [IP3, also known as Ins(1,4,5)P3] signalling. However, there is no definitive evidence to support this or any other proposed target; a problem exacerbated by a lack of good cellular models. Phosphatidylinositol (3,4,5)-trisphosphate [PIP3, also known as PtdIns(3,4,5)P3] is a prominent intracellular signal molecule within the central nervous system (CNS) that regulates neuronal survival, connectivity and synaptic function. By using the genetically tractable organism Dictyostelium, we show that lithium suppresses PIP3-mediated signalling. These effects extend to the human neutrophil cell line HL60. Mechanistically, we show that lithium attenuates phosphoinositide synthesis and that its effects can be reversed by overexpression of inositol monophosphatase (IMPase), consistent with the inositol-depletion hypothesis. These results demonstrate a lithium target that is compatible with our current knowledge of the genetic predisposition for bipolar disorder. They also suggest that lithium therapy might be beneficial for other diseases caused by elevated PIP3 signalling.


Disease Models & Mechanisms | 2012

The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium

Pishan Chang; Benoit Orabi; Rania M. Deranieh; Manik Dham; Oliver Hoeller; Jakob Avi Shimshoni; Boris Yagen; Meir Bialer; Miriam L. Greenberg; Matthew C. Walker; Robin S.B. Williams

SUMMARY Valproic acid (VPA) is the most widely prescribed epilepsy treatment worldwide, but its mechanism of action remains unclear. Our previous work identified a previously unknown effect of VPA in reducing phosphoinositide production in the simple model Dictyostelium followed by the transfer of data to a mammalian synaptic release model. In our current study, we show that the reduction in phosphoinositide [PtdInsP (also known as PIP) and PtdInsP2 (also known as PIP2)] production caused by VPA is acute and dose dependent, and that this effect occurs independently of phosphatidylinositol 3-kinase (PI3K) activity, inositol recycling and inositol synthesis. In characterising the structural requirements for this effect, we also identify a family of medium-chain fatty acids that show increased efficacy compared with VPA. Within the group of active compounds is a little-studied group previously associated with seizure control, and analysis of two of these compounds (nonanoic acid and 4-methyloctanoic acid) shows around a threefold enhanced potency compared with VPA for protection in an in vitro acute rat seizure model. Together, our data show that VPA and a newly identified group of medium-chain fatty acids reduce phosphoinositide levels independently of inositol regulation, and suggest the reinvestigation of these compounds as treatments for epilepsy.


Molecular Pharmacology | 2006

The effects of central nervous system-active valproic acid constitutional isomers, cyclopropyl analogs, and amide derivatives on neuronal growth cone behavior.

Jakob Avi Shimshoni; Emma Dalton; A. Jenkins; S. Eyal; Kenneth Burnside Ramsay Ewan; Robin S.B. Williams; N. Pessah; Boris Yagen; Adrian J. Harwood; Meir Bialer

Valproic acid (VPA) is an effective antiepileptic drug with an additional activity for the treatment of bipolar disorder. It has been assumed that both activities arise from a common target. At the molecular level, VPA targets a number of distinct proteins that are involved in signal transduction. VPA inhibition of inositol synthase reduces the cellular concentration of myo-inositol, an effect common to the mood stabilizers lithium and carbamazepine. VPA inhibition of histone deacetylases activates Wnt signaling via elevated β-catenin expression and causes teratogenicity. Given the VPA chemical structure, it may be possible to design VPA derivatives and analogs that modulate specific protein targets but leave the others unaffected. Indeed, it has been shown that some nonteratogenic VPA derivatives retain antiepileptic and inositol signaling effects. In this study, we describe a further set of VPA analogs and derivatives that separate anticonvulsant activity from effects on neuronal growth cone morphology. Lithium, carbamazepine, and VPA induce inositol-dependent spread of neuronal growth cones, providing a cell-based assay that correlates with mood-stabilizing activity. We find that two constitutional isomers of VPA, propylisopropylacetic acid and diisopropylacetic acid, but not their corresponding amides, and N-methyl-2,2,3,3-tetramethyl-cyclopropanecarboaxamide are more effective than VPA in increasing growth cone spreading. We show that these effects are associated with inositol depletion, and not changes in β-catenin-mediated Wnt signaling. These results suggest a route to a new generation of central nervous system-active VPA analogs that specifically target bipolar disorder.

Collaboration


Dive into the Robin S.B. Williams's collaboration.

Top Co-Authors

Avatar

Matthew C. Walker

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Kathryn Adley

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Dalton

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge