Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin Shoemaker is active.

Publication


Featured researches published by Robin Shoemaker.


American Journal of Physiology-heart and Circulatory Physiology | 2012

The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome

Kelly Putnam; Robin Shoemaker; Frederique Yiannikouris; Lisa A. Cassis

The renin-angiotensin system (RAS) is an important therapeutic target in the treatment of hypertension. Obesity has emerged as a primary contributor to essential hypertension in the United States and clusters with other metabolic disorders (hyperglycemia, hypertension, high triglycerides, low HDL cholesterol) defined within the metabolic syndrome. In addition to hypertension, RAS blockade may also serve as an effective treatment strategy to control impaired glucose and insulin tolerance and dyslipidemias in patients with the metabolic syndrome. Hyperglycemia, insulin resistance, and/or specific cholesterol metabolites have been demonstrated to activate components required for the synthesis [angiotensinogen, renin, angiotensin-converting enzyme (ACE)], degradation (ACE2), or responsiveness (angiotensin II type 1 receptors, Mas receptors) to angiotensin peptides in cell types (e.g., pancreatic islet cells, adipocytes, macrophages) that mediate specific disorders of the metabolic syndrome. An activated local RAS in these cell types may contribute to dysregulated function by promoting oxidative stress, apoptosis, and inflammation. This review will discuss data demonstrating the regulation of components of the RAS by cholesterol and its metabolites, glucose, and/or insulin in cell types implicated in disorders of the metabolic syndrome. In addition, we discuss data supporting a role for an activated local RAS in dyslipidemias and glucose intolerance/insulin resistance and the development of hypertension in the metabolic syndrome. Identification of an activated RAS as a common thread contributing to several disorders of the metabolic syndrome makes the use of angiotensin receptor blockers and ACE inhibitors an intriguing and novel option for multisymptom treatment.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Angiotensin Converting Enzyme 2 Contributes to Sex Differences in the Development of Obesity Hypertension in C57bl/6 Mice

Manisha Gupte; Sean E. Thatcher; Carine M. Boustany-Kari; Robin Shoemaker; Frederique Yiannikouris; Xuan Zhang; Michael Karounos; Lisa A. Cassis

Objectives—Obesity promotes hypertension, but it is unclear if sex differences exist in obesity-related hypertension. Angiotensin converting enzyme 2 (ACE2) converts angiotensin II (AngII) to angiotensin-(1–7) (Ang-[1–7]), controlling peptide balance. We hypothesized that tissue-specific regulation of ACE2 by high-fat (HF) feeding and sex hormones contributes to sex differences in obesity-hypertension. Methods and Results—HF-fed females gained more body weight and fat mass than males. HF-fed males exhibiting reduced kidney ACE2 activity had increased plasma angiotensin II levels and decreased plasma Ang-(1–7) levels. In contrast, HF-fed females exhibiting elevated adipose ACE2 activity had increased plasma Ang-(1–7) levels. HF-fed males had elevated systolic and diastolic blood pressure that were abolished by losartan. In contrast, HF-fed females did not exhibit increased systolic blood pressure until females were administered the Ang-(1–7) receptor antagonist, D-Ala-Ang-(1–7). Deficiency of ACE2 increased systolic blood pressure in HF-fed males and females, which was abolished by losartan. Ovariectomy of HF-fed female mice reduced adipose ACE2 activity and plasma Ang-(1–7) levels, and promoted obesity-hypertension. Finally, estrogen, but not other sex hormones, increased adipocyte ACE2 mRNA abundance. Conclusions—These results demonstrate that tissue-specific regulation of ACE2 by diet and sex hormones contributes to sex differences in obesity-hypertension.


American Journal of Physiology-endocrinology and Metabolism | 2015

Administration of 17β-estradiol to ovariectomized obese female mice reverses obesity-hypertension through an ACE2-dependent mechanism

Yu Wang; Robin Shoemaker; Sean E. Thatcher; Frederique Batifoulier-Yiannikouris; Victoria L. English; Lisa A. Cassis

We recently demonstrated that female mice are resistant to the development of obesity-induced hypertension through a sex hormone-dependent mechanism that involved adipose angiotensin-converting enzyme 2 (ACE2). In this study, we hypothesized that provision of 17β-estradiol (E2) to ovariectomized (OVX) high-fat (HF)-fed female hypertensive mice would reverse obesity-hypertension through an ACE2-dependent mechanism. Pilot studies defined dose-dependent effects of E2 in OVX female mice on serum E2 concentrations and uterine weights. An E2 dose of 36 μg/ml restored normal serum E2 concentrations and uterine weights. Therefore, HF-fed OVX female Ace2(+/+) and Ace2(-/-) mice were administered vehicle or E2 (36 μg/ml) for 16 wk. E2 administration significantly decreased body weights of HF-fed OVX female Ace2(+/+) and Ace2(-/-) mice of either genotype. At 15 wk, E2 administration decreased systolic blood pressure (SBP) of OVX HF-fed Ace2(+/+) but not Ace2(-/-) females during the light but not the dark cycle. E2-mediated reductions in SBP in Ace2(+/+) females were associated with significant elevations in adipose ACE2 mRNA abundance and activity and reduced plasma ANG II concentrations. In contrast to females, E2 administration had no effect on any parameter quantified in HF-fed male hypertensive mice. In 3T3-L1 adipocytes, E2 promoted ACE2 mRNA abundance through effects at estrogen receptor-α (ERα) and resulted in ERα-mediated binding at the ACE2 promoter. These results demonstrate that E2 administration to OVX females reduces obesity-induced elevations in SBP (light cycle) through an ACE2-dependent mechanism. Beneficial effects of E2 to decrease blood pressure in OVX obese females may result from stimulation of adipose ACE2.


Hypertension | 2015

Deficiency of Angiotensinogen in Hepatocytes Markedly Decreases Blood Pressure in Lean and Obese Male Mice

Frederique Yiannikouris; Yu Wang; Robin Shoemaker; Nika Larian; Joel C. Thompson; Victoria L. English; Richard Charnigo; Wen Su; Ming Gong; Lisa A. Cassis

We recently demonstrated that adipocyte deficiency of angiotensinogen (AGT) ablated high-fat diet–induced elevations in plasma angiotensin II (Ang II) concentrations and obesity-hypertension in male mice. Hepatocytes are the predominant source of systemic AGT. Therefore, in this study, we defined the contribution of hepatocyte-derived AGT to obesity-induced elevations in plasma AGT concentrations and hypertension. Male Agtfl/fl mice expressing albumin-driven Cre recombinase were bred to female Agtfl/fl mice to generate Agtfl/fl or hepatocyte AGT–deficient male mice (AgtAlb). Mice were fed a low-fat or high-fat diet for 16 weeks. Hepatocyte AGT deficiency had no significant effect on body weight. Plasma AGT concentrations were increased in obese Agtfl/fl mice. Hepatocyte AGT deficiency markedly reduced plasma AGT and Ang II concentrations in lean and obese mice. Moreover, hepatocyte AGT deficiency reduced the content and release of AGT from adipose explants. Systolic blood pressure was markedly decreased in lean (by 18 mm Hg) and obese AgtAlb mice (by 54 mm Hg) compared with Agtfl/fl controls. To define mechanisms, we quantified effects of Ang II on mRNA abundance of megalin, an AGT uptake transporter, in 3T3-L1 adipocytes. Ang II stimulated adipocyte megalin mRNA abundance and decreased media AGT concentrations. These results demonstrate that hepatocytes are the predominant source of systemic AGT in both lean and obese mice. Moreover, reductions in plasma angiotensin concentrations in obese hepatocyte AGT–deficient mice may have limited megalin-dependent uptake of AGT into adipocytes for the production of Ang II in the development of obesity-hypertension.


Environmental Health Perspectives | 2015

Effects of Adipocyte Aryl Hydrocarbon Receptor Deficiency on PCB-Induced Disruption of Glucose Homeostasis in Lean and Obese Mice

Nicki A. Baker; Robin Shoemaker; Victoria L. English; Nika Larian; Manjula Sunkara; Andrew J. Morris; Mary K. Walker; Frederique Yiannikouris; Lisa A. Cassis

Background Coplanar polychlorinated biphenyls (PCBs) promote adipocyte inflammation and impair glucose homeostasis in lean mice. The diabetes-promoting effects of lipophilic PCBs have been observed only during weight loss in obese mice. The molecular mechanisms linking PCB exposures to impaired glucose metabolism are unclear. Objectives In this study we tested the hypothesis that coplanar PCBs act at adipocyte aryl hydrocarbon receptors (AhRs) to promote adipose inflammation and impair glucose homeostasis in lean mice and in obese mice during weight loss. Methods and Results PCB-77 administration impaired glucose and insulin tolerance in LF (low fat diet)–fed control (AhRfl/fl) mice but not in adipocyte AhR–deficient mice (AhRAdQ). Unexpectedly, AhRAdQ mice exhibited increased fat mass when fed a standard LF or high fat (HF) diet. In mice fed a HF diet, both genotypes became obese, but AhRAdQ mice administered vehicle (VEH) exhibited increased body weight, adipose mass, adipose inflammation, and impaired glucose tolerance compared with AhRfl/fl controls. Impairment of glucose homeostasis in response to PCB-77 was not observed in obese mice of either genotype. However, upon weight loss, AhRfl/fl mice administered PCB-77 exhibited increased abundance of adipose tumor necrosis factor-α (TNF-α) mRNA and impaired glucose homeostasis compared with those administered VEH. In contrast, PCB-77 had no effect on TNF-α or glucose homeostasis in AhRAdQ mice exhibiting weight loss. Conclusions Our results demonstrate that adipocyte AhR mediates PCB-induced adipose inflammation and impairment of glucose homeostasis in mice. Moreover, deficiency of AhR in adipocytes augmented the development of obesity, indicating that endogenous ligand(s) for AhR regulate adipose homeostasis. Citation Baker NA, Shoemaker R, English V, Larian N, Sunkara M, Morris AJ, Walker M, Yiannikouris F, Cassis LA. 2015. Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB-induced disruption of glucose homeostasis in lean and obese mice. Environ Health Perspect 123:944–950; http://dx.doi.org/10.1289/ehp.1408594


American Journal of Physiology-endocrinology and Metabolism | 2015

ACE2 deficiency reduces β-cell mass and impairs β-cell proliferation in obese C57BL/6 mice.

Robin Shoemaker; Frederique Yiannikouris; Sean E. Thatcher; Lisa A. Cassis

Drugs that inhibit the renin-angiotensin system (RAS) decrease the onset of type 2 diabetes (T2D). Pancreatic islets express RAS components, including angiotensin-converting enzyme 2 (ACE2), which cleaves angiotensin II (Ang II) to angiotensin-(1-7) [Ang-(1-7)]. Overexpression of ACE2 in pancreas of diabetic mice improved glucose homeostasis. The purpose of this study was to determine if deficiency of endogenous ACE2 contributes to islet dysfunction and T2D. We hypothesized that ACE2 deficiency potentiates the decline in β-cell function and augments the development of diet-induced T2D. Male Ace2(+/y) or Ace2(-/y) mice were fed a low-fat (LF) or high-fat (HF) diet for 1 or 4 mo. A subset of 1-mo HF-fed mice were infused with Sal (Sal), losartan (Los), or Ang-(1-7). At 4 mo, while both genotypes of HF-fed mice developed a similar level of insulin resistance, adaptive hyperinsulinemia was reduced in Ace2(-/y) vs. Ace2(+/y) mice. Similarly, in vivo glucose-stimulated insulin secretion (GSIS) was reduced in 1-mo HF-fed Ace2(-/y) compared with Ace2(+/y) mice, resulting in augmented hyperglycemia. The average islet area was significantly smaller in both LF- and HF-fed Ace2(-/y) vs. Ace2(+/y) mice. Additionally, β-cell mass and proliferation were reduced significantly in HF-fed Ace2(-/y) vs. Ace2(+/y) mice. Neither infusion of Los nor Ang-(1-7) was able to correct impaired in vivo GSIS of HF-fed ACE2-deficient mice. These results demonstrate a critical role for endogenous ACE2 in the adaptive β-cell hyperinsulinemic response to HF feeding through regulation of β-cell proliferation and growth.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Differential effects of Mas receptor deficiency on cardiac function and blood pressure in obese male and female mice

Yu Wang; Robin Shoemaker; David K. Powell; Wen Su; Sean E. Thatcher; Lisa A. Cassis

Angiotensin-(1-7) [ANG-(1-7)] acts at Mas receptors (MasR) to oppose effects of angiotensin II (ANG II). Previous studies demonstrated that protection of female mice from obesity-induced hypertension was associated with increased systemic ANG-(1-7), whereas male obese hypertensive mice exhibited increased systemic ANG II. We hypothesized that MasR deficiency (MasR-/- ) augments obesity-induced hypertension in males and abolishes protection of females. Male and female wild-type (MasR+/+ ) and MasR-/- mice were fed a low-fat (LF) or high-fat (HF) diet for 16 wk. MasR deficiency had no effect on obesity. At baseline, male and female MasR-/- mice had reduced ejection fraction (EF) and fractional shortening than MasR+/+ mice. Male, but not female, HF-fed MasR+/+ mice had increased systolic and diastolic (DBP) blood pressures compared with LF-fed controls. In HF-fed females, MasR deficiency increased DBP compared with LF-fed controls. In contrast, male HF-fed MasR-/- mice had lower DBP than MasR+/+ mice. We quantified cardiac function after 1 mo of HF feeding in males of each genotype. HF-fed MasR-/- mice had higher left ventricular (LV) wall thickness than MasR+/+ mice. Moreover, MasR+/+ , but not MasR-/- , mice displayed reductions in EF from HF feeding that were reversed by ANG-(1-7) infusion. LV fibrosis was reduced in HF-fed MasR+/+ but not MasR-/- ANG-(1-7)-infused mice. These results demonstrate that MasR deficiency promotes obesity-induced hypertension in females. In males, HF feeding reduced cardiac function, which was restored by ANG-(1-7) in MasR+/+ but not MasR-/- mice. MasR agonists may be effective therapies for obesity-associated cardiovascular conditions.NEW & NOTEWORTHY MasR deficiency abolishes protection of female mice from obesity-induced hypertension. Male MasR-deficient obese mice have reduced blood pressure and declines in cardiac function. ANG-(1-7) infusion restores obesity-induced cardiac dysfunction of wild-type, but not MasR-deficient, male mice. MasR agonists may be cardioprotective in obese males and females.


Hypertension | 2017

Abstract 141: Adipocyte Deficiency of Angiotensin Converting Enzyme 2 Increases Systolic Blood Pressures of Obese Female Mice

Robin Shoemaker; Wen Su; Ming Gong; Susan B. Gurley; Lisa A. Cassis


Hypertension | 2016

Abstract P199: Mas Receptor Deficiency Regulates Obesity-Hypertension and Cardiac Function in Female and Male Mice

Robin Shoemaker; Yu Wang; Sean E. Thatcher; Lisa A. Cassis


Archive | 2015

Regulation of pancreatic beta-cell function by the renin-angiotensin system in type 2 diabetes

Robin Shoemaker

Collaboration


Dive into the Robin Shoemaker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Wang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Su

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Ming Gong

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Nika Larian

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge