Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robyn H. Wallace is active.

Publication


Featured researches published by Robyn H. Wallace.


Nature Genetics | 1998

Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B

Robyn H. Wallace; Dao W. Wang; Rita Singh; Ingrid E. Scheffer; Alfred L. George; Hilary A. Phillips; Kathrin Saar; André Reis; Grant R. Sutherland; Samuel F. Berkovic; John C. Mulley

Febrile seizures affect approximately 3% of all children under six years of age and are by far the most common seizure disorder. A small proportion of children with febrile seizures later develop ongoing epilepsy with afebrile seizures. Segregation analysis suggests the majority of cases have complex inheritance but rare families show apparent autosomal dominant inheritance. Two putative loci have been mapped (FEB1 and FEB2), but specific genes have not yet been identified. We recently described a clinical subset, termed generalized epilepsy with febrile seizures plus (GEFS+), in which many family members have seizures with fever that may persist beyond six years of age or be associated with afebrile generalized seizures. We now report linkage, in another large GEFS+ family, to chromosome region 19q13.1 and identification of a mutation in the voltage-gated sodium (Na+)-channel ß1 subunit gene (SCN1B). The mutation changes a conserved cysteine residue disrupting a putative disulfide bridge which normally maintains an extracellular immunoglobulin-like fold. Co-expression of the mutant ß1 subunit with a brain Na+-channel ß subunit in Xenopus laevis oocytes demonstrates that the mutation interferes with the ability of the subunit to modulate channel-gating kinetics consistent with a loss-of-function allele. This observation develops the theme that idiopathic epilepsies are a family of channelopathies and raises the possibility of involvement of other Na+-channel subunit genes in febrile seizures and generalized epilepsies with complex inheritance patterns.


American Journal of Human Genetics | 2002

Truncation of the GABAA-Receptor γ2 Subunit in a Family with Generalized Epilepsy with Febrile Seizures Plus

Louise A. Harkin; David N. Bowser; Leanne M. Dibbens; Rita Singh; Fiona Phillips; Robyn H. Wallace; Michaella C. Richards; David A. Williams; John C. Mulley; Samuel F. Berkovic; Ingrid E. Scheffer; Steven Petrou

Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.


Nature Genetics | 2002

Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy

Petter Strømme; Marie Mangelsdorf; Marie A. Shaw; Karen M. Lower; Suzanne Lewis; Helene Bruyere; Viggo Lütcherath; Agi K. Gedeon; Robyn H. Wallace; Ingrid E. Scheffer; Gillian Turner; Michael Partington; Suzanna G M Frints; Jean-Pierre Fryns; Grant R. Sutherland; John C. Mulley; Jozef Gecz

Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation. At least eight autosomal genes involved in idiopathic epilepsy have been identified, and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome–linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine and polyglutamine disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.


American Journal of Human Genetics | 2001

Neuronal Sodium-Channel α1-Subunit Mutations in Generalized Epilepsy with Febrile Seizures Plus

Robyn H. Wallace; Ingrid E. Scheffer; S. Barnett; Michaella C. Richards; Leanne M. Dibbens; R.R. Desai; Tally Lerman-Sagie; Dorit Lev; A. Mazarib; N. Brand; Bruria Ben-Zeev; I. Goikhman; Rita Singh; G. Kremmidiotis; Alison Gardner; G.R. Sutherland; Alfred L. George; J. C. Mulley; Samuel F. Berkovic

Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by the presence of febrile and afebrile seizures. The first gene, GEFS1, was mapped to chromosome 19q and was identified as the sodium-channel beta1-subunit, SCN1B. A second locus on chromosome 2q, GEFS2, was recently identified as the sodium-channel alpha1-subunit, SCN1A. Single-stranded conformation analysis (SSCA) of SCN1A was performed in 53 unrelated index cases to estimate the frequency of mutations in patients with GEFS+. No mutations were found in 17 isolated cases of GEFS+. Three novel SCN1A mutations-D188V, V1353L, and I1656M-were found in 36 familial cases; of the remaining 33 families, 3 had mutations in SCN1B. On the basis of SSCA, the combined frequency of SCN1A and SCN1B mutations in familial cases of GEFS+ was found to be 17%.


Journal of Medical Genetics | 1996

Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21.

Robyn H. Wallace; Samuel F. Berkovic; R A Howell; G.R. Sutherland; John C. Mulley

Febrile convulsions affect 2 to 5% of all children under the age of 5 years. These convulsions probably have a variety of causes, but a genetic component has long been recognised. A large and remarkable family is described in which febrile convulsions appear to result from autosomal dominant inheritance at a single major locus. A gene for febrile convulsions was excluded from regions of previously mapped epilepsy genes and extension of exclusion mapping, using microsatellite markers, to the entire genome implied that a locus on chromosome 8q13-21 may be involved. Linkage analysis of markers on chromosome 8 gave a multipoint lod score of 3.40, maximised over different values of penetrance and phenocopy rate, for linkage between the gene for febrile convulsions and the region flanked by markers D8S553 and D8S279. This lod score was calculated assuming the disease has a penetrance of 60% and a phenocopy rate of 3%. Although there was no indication of linkage other than to markers on chromosome 8, linkage remains suggestive rather than significant because of the maximisation procedure applied. The support for linkage involving a major gene, as opposed to an alternative hypothesis of a complex inheritance pattern, relied upon the assumption of low penetrance.


Neurology | 2003

Sodium channel α1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms

Robyn H. Wallace; Bree L. Hodgson; Bronwyn E. Grinton; R. M. Gardiner; Robert Robinson; Victoria Rodriguez-Casero; Lynette G. Sadleir; J. Morgan; Louise A. Harkin; Leanne M. Dibbens; T. Yamamoto; Eva Andermann; J. C. Mulley; Samuel F. Berkovic; Ingrid E. Scheffer

Background: Mutations in SCN1A, the gene encoding the α1 subunit of the sodium channel, have been found in severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+). Mutations in SMEI include missense, nonsense, and frameshift mutations more commonly arising de novo in affected patients. This finding is difficult to reconcile with the family history of GEFS+ in a significant proportion of patients with SMEI. Infantile spasms (IS), or West syndrome, is a severe epileptic encephalopathy that is usually symptomatic. In some cases, no etiology is found and there is a family history of epilepsy. Method: The authors screened SCN1A in 24 patients with SMEI and 23 with IS. Results: Mutations were found in 8 of 24 (33%) SMEI patients, a frequency much lower than initial reports from Europe and Japan. One mutation near the carboxy terminus was identified in an IS patient. A family history of seizures was found in 17 of 24 patients with SMEI. Conclusions: The rate of SCN1A mutations in this cohort of SMEI patients suggests that other factors may be important in SMEI. Less severe mutations associated with GEFS+ could interact with other loci to cause SMEI in cases with a family history of GEFS+. This study extends the phenotypic heterogeneity of mutations in SCN1A to include IS.


American Journal of Human Genetics | 2008

A Homozygous Mutation in Human PRICKLE1 Causes an Autosomal-Recessive Progressive Myoclonus Epilepsy-Ataxia Syndrome

Alexander G. Bassuk; Robyn H. Wallace; Aimee Buhr; Andrew R. Buller; Zaid Afawi; Masahito Shimojo; Shingo Miyata; Shan Chen; Pedro Gonzalez-Alegre; Hilary Griesbach; Shu Wu; Marcus Nashelsky; Eszter K. Vladar; Dragana Antic; Polly J. Ferguson; Sebahattin Cirak; Thomas Voit; Matthew P. Scott; Jeffrey D. Axelrod; Christina A. Gurnett; Azhar S. Daoud; Sara Kivity; Miriam Y. Neufeld; Aziz Mazarib; Rachel Straussberg; Simri Walid; Amos D. Korczyn; Diane C. Slusarski; Samuel F. Berkovic; Hatem I. El-Shanti

Progressive myoclonus epilepsy (PME) is a syndrome characterized by myoclonic seizures (lightning-like jerks), generalized convulsive seizures, and varying degrees of neurological decline, especially ataxia and dementia. Previously, we characterized three pedigrees of individuals with PME and ataxia, where either clinical features or linkage mapping excluded known PME loci. This report identifies a mutation in PRICKLE1 (also known as RILP for REST/NRSF interacting LIM domain protein) in all three of these pedigrees. The identified PRICKLE1 mutation blocks the PRICKLE1 and REST interaction in vitro and disrupts the normal function of PRICKLE1 in an in vivo zebrafish overexpression system. PRICKLE1 is expressed in brain regions implicated in epilepsy and ataxia in mice and humans, and, to our knowledge, is the first molecule in the noncanonical WNT signaling pathway to be directly implicated in human epilepsy.


Neurology | 2002

Generalized epilepsy with febrile seizures plus: Mutation of the sodium channel subunit SCN1B

Robyn H. Wallace; Ingrid E. Scheffer; G. Parasivam; S. Barnett; Geoffrey Wallace; G.R. Sutherland; Samuel F. Berkovic; J. C. Mulley

Abstract—Generalized epilepsy with febrile seizures plus (GEFS+) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS+ and FS patients were screened for mutations in the sodium channel &bgr;-subunits SCN1B and SCN2B, and the second GEFS+ family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS+ phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS+, and the authors found no evidence to implicate SCN2B in this syndrome.


The Journal of Neuroscience | 2008

Latent stem and progenitor cells in the hippocampus are activated by neural excitation.

Tara L. Walker; Amanda White; Debra Black; Robyn H. Wallace; Pankaj Sah; Perry F. Bartlett

The regulated production of neurons in the hippocampus throughout life underpins important brain functions such as learning and memory. Surprisingly, however, studies have so far failed to identify a resident hippocampal stem cell capable of providing the renewable source of these neurons. Here, we report that depolarizing levels of KCl produce a threefold increase in the number of neurospheres generated from the adult mouse hippocampus. Most interestingly, however, depolarizing levels of KCl led to the emergence of a small subpopulation of precursors (approximately eight per hippocampus) with the capacity to generate very large neurospheres (>250 μm in diameter). Many of these contained cells that displayed the cardinal properties of stem cells: multipotentiality and self-renewal. In contrast, the same conditions led to the opposite effect in the other main neurogenic region of the brain, the subventricular zone, in which neurosphere numbers decreased by ∼40% in response to depolarizing levels of KCl. Most importantly, we also show that the latent hippocampal progenitor population can be activated in vivo in response to prolonged neural activity found in status epilepticus. This work provides the first direct evidence of a latent precursor and stem cell population in the adult hippocampus, which is able to be activated by neural activity. Because the latent population is also demonstrated to reside in the aged animal, defining the precise mechanisms that underlie its activation may provide a means to combat the cognitive deficits associated with a decline in neurogenesis.


Epilepsia | 2004

Genetic architecture of idiopathic generalized epilepsy: Clinical genetic analysis of 55 multiplex families

Carla Marini; Ingrid E. Scheffer; Kathryn M. Crossland; Bronwyn E. Grinton; Fiona Phillips; Jacinta M. McMahon; Samantha J. Turner; Joanne T. Dean; Sara Kivity; Aziz Mazarib; Miriam Y. Neufeld; Amos D. Korczyn; Louise A. Harkin; Leanne M. Dibbens; Robyn H. Wallace; John C. Mulley; Samuel F. Berkovic

Summary:  Purpose: In families with idiopathic generalized epilepsy (IGE), multiple IGE subsyndromes may occur. We performed a genetic study of IGE families to clarify the genetic relation of the IGE subsyndromes and to improve understanding of the mode(s) of inheritance.

Collaboration


Dive into the Robyn H. Wallace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leanne M. Dibbens

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

J. C. Mulley

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Tim J. Butler

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Steven Petrou

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

G.R. Sutherland

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge