Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robyn M. Brown is active.

Publication


Featured researches published by Robyn M. Brown.


Nature Neuroscience | 2015

Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections

Yonatan M. Kupchik; Robyn M. Brown; Jasper A. Heinsbroek; Mary Kay Lobo; Danielle Joy Schwartz; Peter W. Kalivas

It is widely accepted that D1 dopamine receptor–expressing striatal neurons convey their information directly to the output nuclei of the basal ganglia, whereas D2-expressing neurons do so indirectly via pallidal neurons. Combining optogenetics and electrophysiology, we found that this architecture does not apply to mouse nucleus accumbens projections to the ventral pallidum. Thus, current thinking attributing D1 and D2 selectivity to accumbens projections akin to dorsal striatal pathways needs to be reconsidered.


The Journal of Neuroscience | 2013

Optogenetic Evidence That Pallidal Projections, Not Nigral Projections, from the Nucleus Accumbens Core Are Necessary for Reinstating Cocaine Seeking

Michael T. Stefanik; Yonatan M. Kupchik; Robyn M. Brown; Peter W. Kalivas

The core subcompartment of the nucleus accumbens (NAcore) contributes significantly to behavioral responses following motivationally relevant stimuli, including drug-induced, stress-induced, and cue-induced reinstatement of cocaine seeking. Projections from NAcore that could carry information necessary to initiate reinstated cocaine seeking include outputs via the indirect pathway to the dorsolateral subcompartment of the ventral pallidum (dlVP) and through the direct pathway to the medial substantia nigra (SN). Here we used an optogenetic strategy to determine whether the dlVP or nigral projections from the NAcore are necessary for cocaine seeking initiated by a cocaine and conditioned cue combination in rats extinguished from cocaine self-administration. Rats were pretreated in the NAcore with an adeno-associated virus expressing the inhibitory opsin archaerhodopsin, and fiber-optic cannulae were implanted above the indirect pathway axon terminal field in the dlVP, or the direct pathway terminal field in the SN. Inhibiting the indirect pathway to the dlVP, but not the direct pathway to the SN, prevented cocaine-plus-cue-induced reinstatement. We also examined projections back to the NAcore from the ventral tegmental area (VTA) and dlVP. Inhibiting the dlVP to NAcore projection did not alter, while inhibiting VTA afferents abolished reinstated cocaine seeking. Localization of green fluorescent protein reporter expression and whole-cell patch electrophysiology were used to verify opsin expression. These data reveal a circuit involving activation of VTA inputs to the NAcore and NAcore projections through the indirect pathway to the dlVP as critical for cocaine-plus-cue-induced reinstatement of cocaine seeking.


Neuropsychopharmacology | 2009

A differential role for the adenosine A2A receptor in opiate reinforcement vs opiate-seeking behavior.

Robyn M. Brown; Jennifer L. Short; Michael S. Cowen; Catherine Ledent; Andrew J. Lawrence

The adenosine A2A receptor is specifically enriched in the medium spiny neurons that make up the ‘indirect’ output pathway from the ventral striatum, a structure known to have a crucial, integrative role in processes such as reward, motivation, and drug-seeking behavior. In the present study we investigated the impact of adenosine A2A receptor deletion on behavioral responses to morphine in a number of reward-related paradigms. The acute, rewarding effects of morphine were evaluated using the conditioned place preference paradigm. Operant self-administration of morphine on both fixed and progressive ratio schedules as well as cue-induced drug-seeking was assessed. In addition, the acute locomotor response to morphine as well as sensitization to morphine was evaluated. Decreased morphine self-administration and breakpoint in A2A knockout mice was observed. These data support a decrease in motivation to consume the drug, perhaps reflecting diminished rewarding effects of morphine in A2A knockout mice. In support of this finding, a place preference to morphine was not observed in A2A knockout mice but was present in wild-type mice. In contrast, robust cue-induced morphine-seeking behavior was exhibited by both A2A knockout and wild-type mice after a period of withdrawal. The acute locomotor response to morphine in the A2A knockout was similar to wild-type mice, yet A2A knockout mice did not display tolerance to chronic morphine under the present paradigm. Both genotypes display locomotor sensitization to morphine, implying a lack of a role for the A2A receptor in the drug-induced plasticity necessary for the development or expression of sensitization. Collectively, these data suggest a differential role for adenosine A2A receptors in opiate reinforcement compared to opiate-seeking.


The International Journal of Neuropsychopharmacology | 2013

Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self-administration, but not cue-conditioned ethanol-seeking, in ethanol-preferring rats

Robyn M. Brown; Shaun Yon-Seng Khoo; Andrew J. Lawrence

Orexins are hypothalamic neuropeptides which bind to two G-protein-coupled receptors, orexin-1 (OX(1)R) and orexin-2 (OX(2)R) receptor. While a role for OX(1)R has been established in both ethanol reinforcement and ethanol-seeking behaviour, the role of OX(2)R in these behaviours is relatively less-studied. The aim of this study was to determine the role of central OX(2)R in ethanol-taking and ethanol-seeking behaviour. Indiana ethanol-preferring rats were trained to self-administer ethanol (10% w/v) or sucrose (0.7–1% w/v) in the presence of reward-associated cues before being implanted with indwelling guide cannulae. The selective OX(2)R antagonist TCS-OX2-29 was administered i.c.v. to assess its effect on operant self-administration and cue-induced reinstatement following extinction. Following i.c.v. injection TCS-OX2-29 reduced self-administration of ethanol, but not sucrose. Despite reducing ethanol self-administration, TCS-OX2-29 had no impact on cue-induced reinstatement of ethanol seeking. To determine where in the brain OX(2)R were acting to modulate ethanol self-administration, TCS-OX2-29 was microinjected into either the shell or core of the nucleus accumbens (NAc). Intra-NAc core, but not shell, infusions of TCS-OX2-29 decreased responding for ethanol. Importantly, the doses of TCS-OX2-029 used were non-sedating. Collectively, these findings implicate OX(2)R in the NAc in mediating the reinforcing effects of ethanol. This effect appears to be drug-specific as antagonism of central OX(2)R had no impact on sucrose self-administration. Thus, OX(2)R in addition to OX(1)R may represent a potential therapeutic target for the treatment of ethanol-use disorders. However, unlike OX(1)R, no impact of OX(2)R antagonism was observed on cue-induced reinstatement, suggesting a more prominent role for OX(2)R in ethanol self-administration compared to cue-conditioned ethanol-seeking.


PLOS ONE | 2010

Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization.

Robyn M. Brown; Jennifer L. Short; Andrew J. Lawrence

Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.


Journal of Pharmacy and Pharmacology | 2008

Adenosine A2A receptors and their role in drug addiction

Robyn M. Brown; Jennifer L. Short

The specific events between initial presumably manageable drug intake and the development of a drug‐ addicted state are not yet known. Drugs of abuse have varying mechanisms of action that create a complex pattern of behaviour related to drug consumption, drug‐seeking, withdrawal and relapse. The neuromodulator adenosine has been shown to play a role in reward‐related behaviour, both as an independent mediator and via interactions of adenosine receptors with other receptors. Adenosine levels are elevated upon exposure to drugs of abuse and adenosine A2A receptors are enriched in brain nuclei known for their involvement in the processing of drug‐related reinforcement processing. A2A receptors are found in receptor clusters with dopamine and glutamate receptors. A2A receptors are thus ideally situated to influence the signalling of neurotransmitters relevant in the neuronal responses and plasticity that underlie the development of drug taking and drug‐seeking behaviour. In this review, we present evidence for the role of adenosine and A2A receptors in drug addiction, thereby providing support for current efforts aimed at developing drug therapies to combat substance abuse that target adenosine signalling via A2A receptors.


Neuropsychopharmacology | 2014

Chronic Administration of the Methylxanthine Propentofylline Impairs Reinstatement to Cocaine by a GLT-1-Dependent Mechanism

Kathryn J. Reissner; Robyn M. Brown; Sade Spencer; Phuong K. Tran; Charles A. Thomas; Peter W. Kalivas

In recent years, interactions between neurons and glia have been evaluated as mediators of neuropsychiatric diseases, including drug addiction. In particular, compounds that increase expression of the astroglial glutamate transporter GLT-1 (N-acetylcysteine and ceftriaxone) can decrease measures of drug seeking. However, it is unknown whether the compounds that influence broad measures of glial physiology can influence behavioral measures of drug relapse, nor is it clear whether the upregulated GLT-1 is functionally important for suppressing of drug seeking. To address these questions, we sought to determine whether the glial modulator and neuroprotective agent propentofylline (PPF) modifies drug seeking in rats using a reinstatement model of cocaine relapse. We found that 7 days of chronic (but not acute) administration of PPF significantly decreased both cue- and cocaine-induced reinstatement of cocaine seeking. We next determined whether the effect of systemic PPF on reinstatement depended upon its ability to restore expression of GLT-1 in the nucleus accumbens. PPF restored the cocaine-induced decrease in GLT-1 in the accumbens core; then, using an antisense strategy against glutamate transporter GLT-1, we found that restored transporter expression was necessary for PPF to inhibit cue-primed cocaine seeking. These findings indicate that modulating glial physiology with atypical xanthine derivatives like PPF is a potential avenue for developing new medications for cocaine abuse, and support the hypothesis that neuron–glial interactions contribute to mechanisms of psychostimulant addiction, particularly via expression and function of astroglial glutamate transporters.


PLOS ONE | 2013

The Metabotropic Glutamate 5 Receptor Modulates Extinction and Reinstatement of Methamphetamine-Seeking in Mice

Rose Chesworth; Robyn M. Brown; Jee Hyun Kim; Andrew J. Lawrence

Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.


CNS Drugs | 2014

Orexin/Hypocretin Based Pharmacotherapies for the Treatment of Addiction: DORA or SORA?

Shaun Yon-Seng Khoo; Robyn M. Brown

Addiction is a chronic relapsing disorder which presents a significant global health burden and unmet medical need. The orexin/hypocretin system is an attractive potential therapeutic target as demonstrated by the successful clinical trials of antagonist medications like Suvorexant for insomnia. It is composed of two neuropeptides, orexin-A and orexin-B and two excitatory and promiscuous G-protein coupled receptors, OX1 and OX2. Orexins are known to have a variety of functions, most notably in regulating arousal, appetite and reward. The orexins have been shown to have a role in mediating the effects of several drugs of abuse, such as cocaine, morphine and alcohol via projections to key brain regions such as the ventral tegmental area, nucleus accumbens and prefrontal cortex. However, it has not yet been demonstrated whether the dual orexin receptor antagonists (DORAs) under development for insomnia are ideal drugs for the treatment of addiction. The question of whether to use a DORA or single orexin receptor antagonist (SORA) for the treatment of addiction is a key question that will need to be answered in order to maximize the clinical utility of orexin receptor antagonists. This review will examine the role of the orexin/hypocretin system in addiction, orexin-based pharmacotherapies under development and factors affecting the selection of one or both orexin receptors as drug targets for the treatment of addiction.


Frontiers in Molecular Neuroscience | 2012

Neuroplasticity in addiction: cellular and transcriptional perspectives

Heather B. Madsen; Robyn M. Brown; Andrew J. Lawrence

Drug addiction is a chronic, relapsing brain disorder which consists of compulsive patterns of drug-seeking and taking that occurs at the expense of other activities. The transition from casual to compulsive drug use and the enduring propensity to relapse is thought to be underpinned by long-lasting neuroadaptations in specific brain circuitry, analogous to those that underlie long-term memory formation. Research spanning the last two decades has made great progress in identifying cellular and molecular mechanisms that contribute to drug-induced changes in plasticity and behavior. Alterations in synaptic transmission within the mesocorticolimbic and corticostriatal pathways, and changes in the transcriptional potential of cells by epigenetic mechanisms are two important means by which drugs of abuse can induce lasting changes in behavior. In this review we provide a summary of more recent research that has furthered our understanding of drug-induced neuroplastic changes both at the level of the synapse, and on a transcriptional level, and how these changes may relate to the human disease of addiction.

Collaboration


Dive into the Robyn M. Brown's collaboration.

Top Co-Authors

Avatar

Andrew J. Lawrence

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Peter W. Kalivas

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jee Hyun Kim

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Yonatan M. Kupchik

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather B. Madsen

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Shaun Yon-Seng Khoo

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Sade Spencer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Catherine Ledent

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Jhodie R. Duncan

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge