Robyn M. Kaake
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robyn M. Kaake.
Molecular & Cellular Proteomics | 2011
Charity T. Aiken; Robyn M. Kaake; Xiaorong Wang; Lan Huang
Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways.
Molecular & Cellular Proteomics | 2010
Robyn M. Kaake; Xiaorong Wang; Lan Huang
Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand how protein complexes work together in cells to maintain cell viability and normal homeostasis. Affinity purification coupled with quantitative mass spectrometry has become the primary method for studying in vivo protein interactions of protein complexes and whole organism proteomes. Recent developments in sample preparation and affinity purification strategies allow the capture, identification, and quantification of protein interactions of protein complexes that are stable, dynamic, transient, and/or weak. Current efforts have mainly focused on generating reliable, reproducible, and high confidence protein interaction data sets for functional characterization. The availability of increasing amounts of information on protein interactions in eukaryotic systems and new bioinformatics tools allow functional analysis of quantitative protein interaction data to unravel the biological significance of the identified protein interactions. Existing studies in this area have laid a solid foundation toward generating a complete map of in vivo protein interaction networks of protein complexes in cells or tissues.
Molecular & Cellular Proteomics | 2014
Robyn M. Kaake; Xiaorong Wang; Anthony M. Burke; Clinton Yu; Wynne Kandur; Yingying Yang; Eric J. Novtisky; Tonya Second; Jicheng Duan; Athit Kao; Shenheng Guan; Danielle Vellucci; Scott D. Rychnovsky; Lan Huang
Protein–protein interactions (PPIs) are fundamental to the structure and function of protein complexes. Resolving the physical contacts between proteins as they occur in cells is critical to uncovering the molecular details underlying various cellular activities. To advance the study of PPIs in living cells, we have developed a new in vivo cross-linking mass spectrometry platform that couples a novel membrane-permeable, enrichable, and MS-cleavable cross-linker with multistage tandem mass spectrometry. This strategy permits the effective capture, enrichment, and identification of in vivo cross-linked products from mammalian cells and thus enables the determination of protein interaction interfaces. The utility of the developed method has been demonstrated by profiling PPIs in mammalian cells at the proteome scale and the targeted protein complex level. Our work represents a general approach for studying in vivo PPIs and provides a solid foundation for future studies toward the complete mapping of PPI networks in living systems.
PLOS Computational Biology | 2010
Thomas Whisenant; David T. Ho; Ryan W. Benz; Jeffrey S. Rogers; Robyn M. Kaake; Elizabeth A. Gordon; Lan Huang; Pierre Baldi; Lee Bardwell
In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new ‘D-site’ class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates.
Journal of Proteome Research | 2010
Robyn M. Kaake; Tijana Milenkovic; Natasa Przulj; Peter K. Kaiser; Lan Huang
Ubiquitin-proteasome dependent protein degradation plays a fundamental role in the regulation of the eukaryotic cell cycle. Cell cycle transitions between different phases are tightly regulated to prevent uncontrolled cell proliferation, which is characteristic of cancer cells. To understand cell cycle phase specific regulation of the 26S proteasome and reveal the molecular mechanisms underlying the ubiquitin-proteasome degradation pathway during cell cycle progression, we have carried out comprehensive characterization of cell cycle phase specific proteasome interacting proteins (PIPs) by QTAX analysis of synchronized yeast cells. Our efforts have generated specific proteasome interaction networks for the G1, S, and M phases of the cell cycle and identified a total of 677 PIPs, 266 of which were not previously identified from unsynchronized cells. On the basis of the dynamic changes of their SILAC ratios across the three cell cycle phases, we have employed a profile vector-based clustering approach and identified 20 functionally significant groups of PIPs, 3 of which are enriched with cell cycle related functions. This work presents the first step toward understanding how dynamic proteasome interactions are involved in various cellular pathways during the cell cycle.
Molecular and Cellular Biology | 2014
Inna Aphasizheva; Liye Zhang; Xiaorong Wang; Robyn M. Kaake; Lan Huang; Stefano Monti; Ruslan Aphasizhev
ABSTRACT Enzymes embedded into the RNA editing core complex (RECC) catalyze the U-insertion/deletion editing cascade to generate open reading frames in trypanosomal mitochondrial mRNAs. The sequential reactions of mRNA cleavage, U-addition or removal, and ligation are directed by guide RNAs (gRNAs). We combined proteomic, genetic, and functional studies with sequencing of total and complex-bound RNAs to define a protein particle responsible for the recognition of gRNAs and pre-mRNA substrates, editing intermediates, and products. This approximately 23-polypeptide tripartite assembly, termed the RNA editing substrate binding complex (RESC), also functions as the interface between mRNA editing, polyadenylation, and translation. Furthermore, we found that gRNAs represent only a subset of small mitochondrial RNAs, and yet an inexplicably high fraction of them possess 3′ U-tails, which correlates with gRNAs enrichment in the RESC. Although both gRNAs and mRNAs are associated with the RESC, their metabolic fates are distinct: gRNAs are degraded in an editing-dependent process, whereas edited mRNAs undergo 3′ adenylation/uridylation prior to translation. Our results demonstrate that the well-characterized editing core complex (RECC) and the RNA binding particle defined in this study (RESC) typify enzymatic and substrate binding macromolecular constituents, respectively, of the ∼40S RNA editing holoenzyme, the editosome.
Journal of the American Society for Mass Spectrometry | 2010
Danielle Vellucci; Athit Kao; Robyn M. Kaake; Scott D. Rychnovsky; Lan Huang
Protein-protein interaction is one of the key regulatory mechanisms for controlling protein function in various cellular processes. Chemical cross-linking coupled with mass spectrometry has proven to be a powerful method not only for mapping protein-protein interactions of all natures, including weak and transient ones, but also for determining their interaction interfaces. One critical challenge remaining in this approach is how to effectively isolate and identify cross-linked products from a complex peptide mixture. In this work, we have developed a novel strategy using conjugation chemistry for selective enrichment of cross-linked products. An azide-tagged cross-linker along with two biotinylated conjugation reagents were designed and synthesized. Cross-linking of model peptides and cytochrome c as well as enrichment of the resulting cross-linked peptides has been assessed. Selective conjugation of azide-tagged cross-linked peptides has been demonstrated using two strategies: copper catalyzed cycloaddition and Staudinger ligation. While both methods are effective, Staudinger ligation is better suited for enriching the cross-linked peptides since there are fewer issues with sample handling. LC MSn analysis coupled with database searching using the Protein Prospector software package allowed identification of 58 cytochrome c cross-linked peptides after enrichment and affinity purification. The new enrichment strategy developed in this work provides useful tools for facilitating identification of cross-linked peptides in a peptide mixture by MS, thus presenting a step forward in future studies of protein-protein interactions of protein complexes by cross-linking and mass spectrometry.
Molecular & Cellular Proteomics | 2012
Lei Fang; Robyn M. Kaake; Vishal R. Patel; Yingying Yang; Pierre Baldi; Lan Huang
The COP9 signalosome (CSN) is a multi-subunit protein complex that performs critical roles in controlling diverse cellular and developmental processes. Aberrant regulation of the CSN complex has been shown to lead to tumorigenesis. Despite its biological significance, our current knowledge of the function and regulation of the CSN complex is very limited. To explore CSN biology, we have developed and employed a new version of the tag team-based QTAX strategy (quantitative analysis of tandem affinity purified in vivo cross-linked (X) protein complexes) by incorporating a label-free MS method for quantitation. Coupled with protein interaction network analysis, this strategy produced a comprehensive and detailed assessment of the protein interaction network of the human CSN complex. In total, we quantitatively characterized 825 putative CSN-interacting proteins, with 270 classified as core interactors (captured by all three bait purifications). Biochemical validation further confirms the validity of selected identified interactors. This work presents the most complete analysis of the CSN interaction network to date, providing an inclusive set of physical interaction data consistent with physiological roles for the CSN. Moreover, the methodology described here is a general proteomic tool for the comprehensive study of protein interaction networks.
Cellular Signalling | 2013
Elizabeth A. Gordon; Thomas Whisenant; Michael Zeller; Robyn M. Kaake; William Gordon; Pascal Krotee; Vishal R. Patel; Lan Huang; Pierre Baldi; Lee Bardwell
Specific docking interactions between mitogen-activated protein kinases (MAPKs), their regulators, and their downstream substrates, are crucial for efficient and accurate signal transmission. To identify novel substrates of the c-Jun N-terminal kinase (JNK) family of MAPKs, we searched the human genome for proteins that contained (1), a predicted JNK-docking site (D-site); and (2), a cluster of putative JNK target phosphosites located close to the D-site. Here we describe a novel JNK substrate that emerged from this analysis, the functionally uncharacterized protein smoothelin-like 2 (SMTNL2). SMTNL2 protein bound with high-affinity to multiple MAPKs including JNK1-3 and ERK2; furthermore, the identity of conserved amino acids in the predicted docking site (residues 180-193) was necessary for this high-affinity binding. In addition, purified full-length SMTNL2 protein was phosphorylated by JNK1-3 in vitro, and this required the integrity of the D-site. Using mass spectrometry and mutagenesis, we identified four D-site-dependent phosphoacceptor sites in close proximity to the docking site, at S217, S241, T236 and T239. A short peptide comprised of the SMTNL2 D-site inhibited JNK-mediated phosphorylation of the ATF2 transcription factor, showing that SMTNL2 can compete with other substrates for JNK binding. Moreover, when transfected into HEK293 cells, SMTNL2 was phosphorylated by endogenous JNK in a D-site dependent manner, on the same residues identified in vitro. SMTNL2 protein was expressed in many mammalian tissues, with a notably high expression in skeletal muscle. Consistent with the hypothesis that SMTNL2 has a function in skeletal muscle, SMTNL2 protein expression was strongly induced during the transition from myoblasts to myotubes in differentiating C2C12 cells.
PLOS Genetics | 2015
Virginia Bilanchone; Kristina Clemens; Robyn M. Kaake; Anthony R. Dawson; Dina P. Matheos; Kunio Nagashima; Parth Sitlani; Kurt Patterson; Ivan Chang; Lan Huang; Suzanne Sandmeyer
Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5’ to 3’ exonuclease Xrn1 were among the proteins identified. These proteins associated with Ty3 proteins and RNA, and were required for formation of Ty3 VLP retrosome assembly factories and for retrotransposition. Specifically, Dhh1/DDX6 was required for normal levels of Ty3 genomic RNA, and Lsm1 and Xrn1 were required for association of Ty3 protein and RNA into retrosomes. This role for components of RNA processing bodies in promoting VLP assembly and retrotransposition during mating in a yeast that lacks RNA interference, contrasts with roles proposed for orthologous components in animal germ cell ribonucleoprotein granules in turnover and epigenetic suppression of retrotransposon RNAs.