Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robyn Meech is active.

Publication


Featured researches published by Robyn Meech.


Clinical and Experimental Pharmacology and Physiology | 1997

STRUCTURE AND FUNCTION OF URIDINE DIPHOSPHATE GLUCURONOSYLTRANSFERASES

Robyn Meech; Peter I. Mackenzie

1. The uridine diphosphate (UDP)‐glucuronosyltransferases (UGT) are a family of enzymes that catalyse the covalent addition of glucuronic acid to a wide range of lipophilic chemicals. They play a major role in the detoxification of many exogenous and endogenous compounds by generating products that are more polar and, thus, more readily excreted in bile or urine.


Science Signaling | 2009

Differential Interactions of FGFs with Heparan Sulfate Control Gradient Formation and Branching Morphogenesis

Helen P. Makarenkova; Matthew P. Hoffman; Andrew Beenken; Anna V. Eliseenkova; Robyn Meech; Cindy Tsau; Vaishali N. Patel; Richard A. Lang; Moosa Mohammadi

Manipulation of the interaction of a morphogen with the extracellular matrix changes its biological activities by altering its diffusion. Branch or Elongate The graded distribution of morphogens, such as fibroblast growth factors (FGFs), is critically important for the patterning of tissues in the developing embryo. Binding of morphogens to heparan sulfate glycosaminoglycans (HSGAGs) controls their diffusion through the extracellular matrix (ECM); however, the extent to which these interactions modulate the activities of morphogens is unclear. Makarenkova et al. studied the differential effects of FGF7 and FGF10, two closely related FGFs with different biological activities, in the context of branching morphogenesis of epithelia from mouse embryonic lacrimal and submandibular glands. Whereas FGF7 induces branching of epithelial buds, FGF10 induces their elongation. Replacement of a single residue in the heparan-binding site of FGF10 with the corresponding residue of FGF7 resulted in a mutant FGF10 that acted as a functional mimic of FGF7; it diffused more readily into the ECM than did wild-type FGF10 and it induced branching rather than elongation of epithelial buds. Thus, not only are the gradients of morphogens established by their interactions with HSGAGs, but these interactions can also modulate their biological activities. The developmental activities of morphogens depend on the gradients that they form in the extracellular matrix. Here, we show that differences in the binding of fibroblast growth factor 7 (FGF7) and FGF10 to heparan sulfate (HS) underlie the formation of different gradients that dictate distinct activities during branching morphogenesis. Reducing the binding affinity of FGF10 for HS by mutating a single residue in its HS-binding pocket converted FGF10 into a functional mimic of FGF7 with respect to gradient formation and regulation of branching morphogenesis. In particular, the mutant form of FGF10 caused lacrimal and salivary gland epithelium buds to branch rather than to elongate. In contrast, mutations that reduced the affinity of the FGF10 for its receptor affected the extent, but not the nature, of the response. Our data may provide a general model for understanding how binding to HS regulates other morphogenetic gradients.


Journal of Biological Chemistry | 1997

UDP-Glucuronosyltransferase, the Role of the Amino Terminus in Dimerization

Robyn Meech; Peter I. Mackenzie

UDP-glucuronosyltransferases (UGTs) comprise an important enzyme system in mammals that is involved in detoxification of a variety of small hydrophobic compounds of both endogenous and exogenous origin. Some evidence suggests that these enzymes may function as oligomers; however, little is known about the domain of interaction or the mechanism of oligomerization. In this work, evidence for a functional dimerization between UGTs is provided by studies on mutated forms of UGT2B1. When two inactive forms of UGT2B1 were co-expressed in cell culture, catalytic activity was restored, indicating that UGT2B1 forms functional dimers. To delineate the dimerization domain, inactive fusion proteins containing the amino- or carboxyl-terminal domains of UGT2B1 were generated and expressed with active UGT2B1. Expression of a fusion protein containing only the amino-terminal half of UGT2B1 with active UGT2B1 caused a reduction in UGT2B1 catalytic activity. This reduction in activity was not observed when UGT2B1 was co-expressed with a fusion protein containing only the carboxyl-terminal half of UGT2B1, strongly suggesting that the amino-terminal domain is involved in dimerization. Truncation of the immediate amino terminus of UGT2B1 abolished UGT2B1 activity and dimer formation. Activity was also abolished by an L4R substitution in this region of the mature protein, which is highly conserved in the UGT family. These results indicate that UGTs can interact through their amino-terminal domains to form catalytically active dimers. Possible mechanisms resulting in the formation and stabilization of the UGT2B1 dimer are discussed.


Journal of Biological Chemistry | 2008

Identification of UDP glycosyltransferase 3A1 as a UDP N-acetylglucosaminyltransferase.

Peter I. Mackenzie; Anne Rogers; Joanna Treloar; Bo R. Jorgensen; John O. Miners; Robyn Meech

The UDP glycosyltransferases (UGT) attach sugar residues to small lipophilic chemicals to alter their biological properties and enhance elimination. Of the four families present in mammals, two families, UGT1 and UGT2, use UDP glucuronic acid to glucuronidate bilirubin, steroids, bile acids, drugs, and many other endogenous chemicals and xenobiotics. UGT8, in contrast, uses UDP galactose to galactosidate ceramide, an important step in the synthesis of glycosphingolipids and cerebrosides. The function of the fourth family, UGT3, is unknown. Here we report the cloning, expression, and functional characterization of UGT3A1. This enzyme catalyzes the transfer of N-acetylglucosamine from UDP N-acetylglucosamine to ursodeoxycholic acid (3α, 7β-dihydroxy-5β-cholanoic acid). The enzyme uses ursodeoxycholic acid and UDP N-acetylglucosamine in preference to other primary and secondary bile acids, and other UDP sugars such as UDP glucose, UDP glucuronic acid, UDP galactose, and UDP xylose. In addition to ursodeoxycholic acid, UGT3A1 has activity toward 17α-estradiol, 17β-estradiol, and the prototypic substrates of the UGT1 and UGT2 forms, 4-nitrophenol and 1-naphthol. A polymorphic UGT3A1 variant containing a C121G substitution was catalytically inactive. UGT3A1 is found in the liver and kidney, and to a lesser, in the gastrointestinal tract. These data describe the first characterization of a member of the UGT3 family. Its activity and distribution suggest that UGT3A1 may have an important role in the metabolism and elimination of ursodeoxycholic acid in therapies for ameliorating the symptoms of cholestasis or for dissolving gallstones.


BioEssays | 1999

Knockout of REST/NRSF shows that the protein is a potent repressor of neuronally expressed genes in non‐neural tissues

Frederick S. Jones; Robyn Meech

The protein repressor element 1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF) is a negative regulator of neuronal genes that contain a particular DNA sequence, the neuron restrictive silencer element (NRSE). REST is expressed ubiquitously in non-neural tissues but is down-regulated in neural precursors and turned off in postmitotic neurons, suggesting that it can act both to prevent extraneural expression of certain genes and to delay the differentiation of neuronal subtypes. In a recent paper, Chen et al.(1) describe the production of a null mutant for REST in mice and the mosaic inactivation of REST function in chicken embryos. Knockout of REST led to malformations in several non-neural tissues, as well as apoptosis and embryonic lethality in mice. In addition, the expression of several REST target genes was derepressed in non-neural tissues and in neural progenitors in both mouse and chicken embryos. These studies clearly demonstrate that active repression of tissue-specific genes is required for proper tissue differentiation during embryonic development.


Pharmacology & Therapeutics | 2012

The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily.

Robyn Meech; John O. Miners; Benjamin C. Lewis; Peter I. Mackenzie

The covalent addition of sugars to small organic molecules is mediated by a superfamily of UDP glycosyltransferases (UGTs) found in animals, plants and bacteria. This superfamily evolved by gene duplication and divergence to manage exposure to a changing environment of lipophilic chemicals. The recent characterization of the UGT3A family provides further insights into the origin and evolution of this superfamily in mammals and the role of individual UGTs in the formation of the various chemical glycosides found in body tissues and fluids. Furthermore, the unique UDP-sugar specificities of the two enzymes in this family inform our knowledge of UGT structure relating to catalysis and UDP-sugar specificity. In addition to the UGT3 gene family, three other gene families, UGTs1, 2, and 8, are found in mammalian genomes. The 19 members of the UGT1 and 2 families have a major role in processing lipophilic chemicals due to their capacity to glucuronidate a broad range of structurally-dissimilar substrates. In contrast, the UGT3 enzymes only have a minor role, as their activities are very low in the major drug-metabolic organs, and their N-acetylglucosaminide and glucoside products are only a minor component of circulating and excreted drug metabolites. Although the endogenous role of the UGT3 family is still unknown, participation in the processing of lipophilic chemicals in specific cell types or at specific times during ontogeny cannot be excluded. In contrast to the UGT 1, 2 and 3 families, the single member of the UGT8 family appears to have no role in drug metabolism.


Development | 2005

The homeobox transcription factor Barx2 regulates chondrogenesis during limb development

Robyn Meech; David B. Edelman; Frederick S. Jones; Helen P. Makarenkova

Among the many factors involved in regulation of chondrogenesis, bone morphogenetic proteins (BMPs) and members of the Sox and homeobox transcription factor families have been shown to have crucial roles. Of these regulators, the homeobox transcription factors that function during chondrogenesis have been the least well defined. We show here that the homeobox transcription factor Barx2 is expressed in primary mesenchymal condensations, digital rays, developing joints and articular cartilage of the developing limb, suggesting that it plays a role in chondrogenesis. Using retroviruses and antisense oligonucleotides to manipulate Barx2 expression in limb bud micromass cultures, we determined that Barx2 is necessary for mesenchymal aggregation and chondrogenic differentiation. In accordance with these findings, Barx2 regulates the expression of several genes encoding cell-adhesion molecules and extracellular matrix proteins, including NCAM and collagen II (Col2a1) in the limb bud. Barx2 bound to elements within the cartilage-specific Col2a1 enhancer, and this binding was reduced by addition of Barx2 or Sox9 antibodies, or by mutation of a HMG box adjacent to the Barx2-binding element, suggesting cooperation between Barx2 and Sox proteins. Moreover, both Barx2 and Sox9 occupy Col2a1 enhancer during chondrogenesis in vivo. We also found that two members of the BMP family that are crucial for chondrogenesis, GDF5 and BMP4, regulate the pattern of Barx2 expression in developing limbs. Based on these data, we suggest that Barx2 acts downstream of BMP signaling and in concert with Sox proteins to regulate chondrogenesis.


Molecular Pharmacology | 2011

The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution.

Peter I. Mackenzie; Anne Rogers; David J. Elliot; Nuy Chau; Julie-Ann Hulin; John O. Miners; Robyn Meech

The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs. We showed recently that UGT3A1, the first member of the UGT3 family to be characterized, is unusual in using UDP N-acetylglucosamine as sugar donor, rather than UDP glucuronic acid or other UDP sugar nucleotides (J Biol Chem 283:36205–36210, 2008). Here, we report the cloning, expression, and characterization of UGT3A2, the second member of the UGT3 family. Like UGT3A1, UGT3A2 is inactive with UDP glucuronic acid as sugar donor. However, in contrast to UGT3A1, UGT3A2 uses both UDP glucose and UDP xylose but not UDP N-acetylglucosamine to glycosidate a broad range of substrates including 4-methylumbelliferone, 1-hydroxypyrene, bioflavones, and estrogens. It has low activity toward bile acids and androgens. UGT3A2 transcripts are found in the thymus, testis, and kidney but are barely detectable in the liver and gastrointestinal tract. The low expression of UGT3A2 in the latter, which are the main organs of drug metabolism, suggests that UGT3A2 has a more selective role in protecting the organs in which it is expressed against toxic insult rather than a more generalized role in drug metabolism. The broad substrate and novel UDP sugar specificity of UGT3A2 would be advantageous for such a function.


Development | 2011

Barx2 and Fgf10 regulate ocular glands branching morphogenesis by controlling extracellular matrix remodeling

Cindy Tsau; Masataka Ito; Anastasia Gromova; Matthew P. Hoffman; Robyn Meech; Helen P. Makarenkova

The lacrimal gland (LG) develops through branching morphogenesis and produces secretions, including tears, that lubricate and protect the ocular surface. Despite the prevalence of LG disorders such as dry eye, relatively little is known about the regulation of LG development. In this study, we show that the homeobox transcription factor Barx2 is highly expressed in conjunctival epithelium, eyelids and ocular [lacrimal, harderian (HG), and meibomian (MG)] glands and is necessary for normal ocular gland and eyelid development. Barx2–/– mice show defective LG morphogenesis, absence of the HG, and defects in MG and eyelid fusion. Ex vivo antisense assays confirm the requirement for Barx2 in LG bud elongation and branching. Gene expression profiles reveal decreased expression of several adhesion and matrix remodeling molecules in Barx2–/– LGs. In culture, Barx2 regulates expression of matrix metalloproteinases (MMPs) and epithelial cell migration through the extracellular matrix. Fibroblast growth factors are crucial regulators of LG development and we show that Barx2 is required for Fgf10-induced LG bud elongation and that both Barx2 and Fgf10 cooperate in the regulation of MMPs. Together, these data suggest a mechanism for the effects of loss of Barx2 on ocular gland development. Intriguingly, salivary glands that also express a high level of Barx2 develop normally in Barx2–/– mice and do not show altered levels of MMPs. Thus, the function of Barx2 is specific to ocular gland development. Based on our data, we propose a functional network involving Barx2, Fgf10 and MMPs that plays an essential role in regulating branching morphogenesis of the ocular glands.


Drug Metabolism Reviews | 2014

Transcriptional regulation of human UDP-glucuronosyltransferase genes

Dong Gui Hu; Robyn Meech; Ross A. McKinnon; Peter I. Mackenzie

Abstract Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3–1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.

Collaboration


Dive into the Robyn Meech's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Gui Hu

Flinders Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anastasia Gromova

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

David B. Edelman

The Neurosciences Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge