Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rocco Gasteiger is active.

Publication


Featured researches published by Rocco Gasteiger.


IEEE Transactions on Visualization and Computer Graphics | 2011

The FLOWLENS: A Focus-and-Context Visualization Approach for Exploration of Blood Flow in Cerebral Aneurysms

Rocco Gasteiger; Mathias Neugebauer; Oliver Beuing; Bernhard Preim

Blood flow and derived data are essential to investigate the initiation and progression of cerebral aneurysms as well as their risk of rupture. An effective visual exploration of several hemodynamic attributes like the wall shear stress (WSS) and the inflow jet is necessary to understand the hemodynamics. Moreover, the correlation between focus-and-context attributes is of particular interest. An expressive visualization of these attributes and anatomic information requires appropriate visualization techniques to minimize visual clutter and occlusions. We present the FLOWLENS as a focus-and-context approach that addresses these requirements. We group relevant hemodynamic attributes to pairs of focus-and-context attributes and assign them to different anatomic scopes. For each scope, we propose several FLOWLENS visualization templates to provide a flexible visual filtering of the involved hemodynamic pairs. A template consists of the visualization of the focus attribute and the additional depiction of the context attribute inside the lens. Furthermore, the FLOWLENS supports local probing and the exploration of attribute changes over time. The FLOWLENS minimizes visual cluttering, occlusions, and provides a flexible exploration of a region of interest. We have applied our approach to seven representative datasets, including steady and unsteady flow data from CFD simulations and 4D PC-MRI measurements. Informal user interviews with three domain experts confirm the usefulness of our approach.


IEEE Transactions on Visualization and Computer Graphics | 2013

Semi-Automatic Vortex Extraction in 4D PC-MRI Cardiac Blood Flow Data using Line Predicates

Benjamin Köhler; Rocco Gasteiger; Uta Preim; Holger Theisel; Matthias Gutberlet; Bernhard Preim

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Their initiation and evolution depends strongly on the blood flow characteristics. In recent years, advances in 4D PC-MRI acquisition enable reliable and time-resolved 3D flow measuring, which allows a qualitative and quantitative analysis of the patient-specific hemodynamics. Currently, medical researchers investigate the relation between characteristic flow patterns like vortices and different pathologies. The manual extraction and evaluation is tedious and requires expert knowledge. Standardized, (semi-)automatic and reliable techniques are necessary to make the analysis of 4D PC-MRI applicable for the clinical routine. In this work, we present an approach for the extraction of vortex flow in the aorta and pulmonary artery incorporating line predicates. We provide an extensive comparison of existent vortex extraction methods to determine the most suitable vortex criterion for cardiac blood flow and apply our approach to ten datasets with different pathologies like coarctations, Tetralogy of Fallot and aneurysms. For two cases we provide a detailed discussion how our results are capable to complement existent diagnosis information. To ensure real-time feedback for the domain experts we implement our method completely on the GPU.


eurographics | 2010

Adapted surface visualization of cerebral aneurysms with embedded blood flow information

Rocco Gasteiger; Mathias Neugebauer; Christoph Kubisch; Bernhard Preim

Cerebral aneurysms are a vascular dilatation induced by a pathological change of the vessel wall and often require treatment to avoid rupture. Therefore, it is of main interest, to estimate the risk of rupture, to gain a deeper understanding of aneurysm genesis, and to plan an actual intervention, the surface morphology and the internal blood flow characteristics. Visual exploration is primarily used to understand such complex and variable type of data. Since the blood flow data is strongly influenced by the surrounding vessel morphology both have to be visually combined to efficiently support visual exploration. Since the flow is spatially embedded in the surrounding aneurysm surface, occlusion problems have to be tackled. Thereby, a meaningful visual reduction of the aneurysm surface that still provides morphological hints is necessary. We accomplish this by applying an adapted illustrative rendering style to the aneurysm surface. Our contribution lies in the combination and adaption of several rendering styles, which allow us to reduce the problem of occlusion and avoid most of the disadvantages of the traditional semi-transparent surface rendering, like ambiguities in perception of spatial relationships. In interviews with domain experts, we derived visual requirements. Later, we conducted an initial survey with 40 participants (13 medical experts of them), which leads to further improvements of our approach.


ieee vgtc conference on visualization | 2009

Map displays for the analysis of scalar data on cerebral aneurysm surfaces

Mathias Neugebauer; Rocco Gasteiger; Oliver Beuing; Volker Diehl; Martin Skalej; Bernhard Preim

Cerebral aneurysms result from a congenital or evolved weakness of stabilizing parts of the vessel wall and potentially lead to rupture and a life‐threatening bleeding. Current medical research concentrates on the integration of blood flow simulation results for risk assessment of cerebral aneurysms. Scalar flow characteristics close to the aneurysm surface, such as wall shear stress, form an important part of the simulation results. Aneurysms exhibit variable surface shapes with only few landmarks. Therefore, the exploration and mental correlation of different surface regions is a difficult task. In this paper, we present an approach for the intuitive and interactive overview visualization of near wall flow data that is mapped onto the surface of a 3D model of a cerebral aneurysm. We combine a multi‐perspective 2D projection map with a standard 3D visualization and present techniques to facilitate the correlation between a 3D model and a related 2D map. An informal evaluation with 4 experienced radiologists has shown that the map‐based overview actually improves the surface exploration. Furthermore, different color schemes were discussed and, as a result, an appropriate color scheme for the visual analysis of the wall shear stress is presented.


Computer Graphics Forum | 2014

Adaptive Surface Visualization of Vessels with Animated Blood Flow

Kai Lawonn; Rocco Gasteiger; Bernhard Preim

The investigation of hemodynamic information for the assessment of cardiovascular diseases (CVDs) gained importance in recent years. Improved flow measuring modalities and computational fluid dynamics (CFD) simulations yield in reliable blood flow information. For a visual exploration of the flow information, domain experts are used to investigate the flow information combined with its enclosed vessel anatomy. Since the flow is spatially embedded in the surrounding vessel surface, occlusion problems have to be resolved. A visual reduction of the vessel surface that still provides important anatomical features is required. We accomplish this by applying an adaptive surface visualization inspired by the suggestive contour measure. Furthermore, an illustration is employed to highlight the animated pathlines and to emphasize nearby surface regions. Our approach combines several visualization techniques to improve the perception of surface shape and depth. Thereby, we ensure appropriate visibility of the embedded flow information, which can be depicted with established or advanced flow visualization techniques. We apply our approach to cerebral aneurysms and aortas with simulated and measured blood flow. An informal user feedback with nine domain experts, we confirm the advantages of our approach compared with existing methods, e.g. semi‐transparent surface rendering. Additionally, we assessed the applicability and usefulness of the pathline animation with highlighting nearby surface regions.


IEEE Transactions on Visualization and Computer Graphics | 2012

Automatic Detection and Visualization of Qualitative Hemodynamic Characteristics in Cerebral Aneurysms

Rocco Gasteiger; Dirk J. Lehmann; R.F.P. van Pelt; Gábor Janiga; Oliver Beuing; Anna Vilanova; Holger Theisel; Bernhard Preim

Cerebral aneurysms are a pathological vessel dilatation that bear a high risk of rupture. For the understanding and evaluation of the risk of rupture, the analysis of hemodynamic information plays an important role. Besides quantitative hemodynamic information, also qualitative flow characteristics, e.g., the inflow jet and impingement zone are correlated with the risk of rupture. However, the assessment of these two characteristics is currently based on an interactive visual investigation of the flow field, obtained by computational fluid dynamics (CFD) or blood flow measurements. We present an automatic and robust detection as well as an expressive visualization of these characteristics. The detection can be used to support a comparison, e.g., of simulation results reflecting different treatment options. Our approach utilizes local streamline properties to formalize the inflow jet and impingement zone. We extract a characteristic seeding curve on the ostium, on which an inflow jet boundary contour is constructed. Based on this boundary contour we identify the impingement zone. Furthermore, we present several visualization techniques to depict both characteristics expressively. Thereby, we consider accuracy and robustness of the extracted characteristics, minimal visual clutter and occlusions. An evaluation with six domain experts confirms that our approach detects both hemodynamic characteristics reasonably.


ieee vgtc conference on visualization | 2011

Perceptual evaluation of ghosted view techniques for the exploration of vascular structures and embedded flow

Alexandra Baer; Rocco Gasteiger; Douglas W. Cunningham; Bernhard Preim

This paper presents three controlled perceptual studies investigating the visualization of the cerebral aneurysm anatomy with embedded flow visualization. We evaluate and compare the common semitransparent visualization technique with a ghosted view and a ghosted view with depth enhancement technique. We analyze the techniques’ ability to facilitate and support the shape and spatial representation of the aneurysm models as well as evaluating the smart visibility characteristics. The techniques are evaluated with respect to the participants accuracy, response time and their personal preferences. We used as stimuli 3D aneurysm models of five clinical datasets. There was overwhelming preference for the two ghosted view techniques over the semitransparent technique. Since smart visibility techniques are rarely evaluated, this paper may serve as orientation for further studies.


Computers & Graphics | 2011

Technical Section: Context-aware mesh smoothing for biomedical applications

Tobias Moench; Rocco Gasteiger; Gábor Janiga; Holger Theisel; Bernhard Preim

Smoothing algorithms allow to reduce artifacts from mesh generation, but often degrade accuracy. Thus, we present a method that identifies staircase artifacts which result from image inhomogeneities and binary segmentation in medical image data for subsequent removal by adaptive mesh smoothing. This paper makes the following specific contributions: caps, which are flat regions, resulting from segmentation or clipping at the endings of anatomical structures are detected and modified by smoothing; the effects of the adaptive smoothing method involving context information are quantitatively analyzed with respect to accuracy and their influence on blood flow simulations; the image stack orientation, which is relevant for this context-aware smoothing approach, is estimated automatically from the surface models. Thus, context-aware smoothing enables to adaptively smooth artifact areas, while non-artifact features can be preserved. The approach has been applied to CT neck datasets, as well as phantom data and the results are evaluated regarding smoothness and model accuracy. The accuracy of model orientation estimation and cap detection has been evaluated for clinical and phantom data. Finally, context-aware smoothing has been applied to CT angiography data for the simulation of blood flow. The simulation results are presented and prove the general suitability of context-aware smoothing.


Biomedizinische Technik | 2013

Recommendations for Accurate Numerical Blood Flow Simulations of Stented Intracranial Aneurysms

Gábor Janiga; Philipp Berg; Oliver Beuing; Matthias Neugebauer; Rocco Gasteiger; Bernhard Preim; Georg Rose; Martin Skalej; Dominique Thévenin

Abstract The number of scientific publications dealing with stented intracranial aneurysms is rapidly increasing. Powerful computational facilities are now available; an accurate computational modeling of hemodynamics in patient-specific configurations is, however, still being sought. Furthermore, there is still no general agreement on the quantities that should be computed and on the most adequate analysis for intervention support. In this article, the accurate representation of patient geometry is first discussed, involving successive improvements. Concerning the second step, the mesh required for the numerical simulation is especially challenging when deploying a stent with very fine wire structures. Third, the description of the fluid properties is a major challenge. Finally, a founded quantitative analysis of the simulation results is obviously needed to support interventional decisions. In the present work, an attempt has been made to review the most important steps for a high-quality computational fluid dynamics computation of virtually stented intracranial aneurysms. In consequence, this leads to concrete recommendations, whereby the obtained results are not discussed for their medical relevance but for the evaluation of their quality. This investigation might hopefully be helpful for further studies considering stent deployment in patient-specific geometries, in particular regarding the generation of the most appropriate computational model.


eurographics | 2014

Comparative Blood Flow Visualization for Cerebral Aneurysm Treatment Assessment

R.F.P. van Pelt; Rocco Gasteiger; Kai Lawonn; Monique Meuschke; Bernhard Preim

A pathological vessel dilation in the brain, termed cerebral aneurysm, bears a high risk of rupture, and is associated with a high mortality. In recent years, incidental findings of unruptured aneurysms have become more frequent, mainly due to advances in medical imaging. The pathological condition is often treated with a stent that diverts the blood flow from the aneurysm sac back to the original vessel. Prior to treatment, neuroradiologists need to decide on the optimal stent configuration and judge the long‐term rupture risk, for which blood flow information is essential. Modern patient‐specific simulations can model the hemodynamics for various stent configurations, providing important indicators to support the decision‐making process. However, the necessary visual analysis of these data becomes tedious and time‐consuming, because of the abundance of information. We introduce a comprehensive comparative visualization that integrates morphology with blood flow indicators to facilitate treatment assessment. To deal with the visual complexity, we propose a details‐on‐demand approach, combining established medical visualization techniques with innovative glyphs inspired by information visualization concepts. In an evaluation we have obtained informal feedback from domain experts, gauging the value of our visualization.

Collaboration


Dive into the Rocco Gasteiger's collaboration.

Top Co-Authors

Avatar

Bernhard Preim

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Gábor Janiga

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Mathias Neugebauer

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Oliver Beuing

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Dominique Thévenin

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Kai Lawonn

University of Koblenz and Landau

View shared research outputs
Top Co-Authors

Avatar

Martin Skalej

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Alexandra Baer

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Georg Rose

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Matthias Neugebauer

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge