Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rocco Panciera is active.

Publication


Featured researches published by Rocco Panciera.


IEEE Transactions on Geoscience and Remote Sensing | 2011

Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data

Maria Piles; Adriano Camps; Mercè Vall-Llossera; Ignasi Corbella; Rocco Panciera; Christoph Rüdiger; Yann Kerr; Jeffrey P. Walker

A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called “universal triangle” concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (Ts), to the soil moisture status. It combines the accuracy of SMOS observations with the high spatial resolution of VIS/IR satellite data into accurate soil moisture estimates at high spatial resolution. In preparation for the SMOS launch, the algorithm was tested using observations of the UPC Airborne RadIomEter at L-band (ARIEL) over the Soil Moisture Measurement Network of the University of Salamanca (REMEDHUS) in Zamora (Spain), and LANDSAT imagery. Results showed fairly good agreement with ground-based soil moisture measurements and illustrated the strength of the link between VIS/IR satellite data and soil moisture status. Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed. The method has been applied to some of the first SMOS images acquired during the commissioning phase and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Results show that the soil moisture variability is effectively captured at 10 and 1 km spatial scales without a significant degradation of the root mean square error.


IEEE Transactions on Geoscience and Remote Sensing | 2014

The Soil Moisture Active Passive Experiments (SMAPEx): Toward Soil Moisture Retrieval From the SMAP Mission

Rocco Panciera; Jeffrey P. Walker; Thomas J. Jackson; Douglas A. Gray; Mihai A. Tanase; Dongryeol Ryu; Alessandra Monerris; Heath Yardley; Christoph Rüdiger; Xiaoling Wu; Ying Gao; Jorg M. Hacker

NASAs Soil Moisture Active Passive (SMAP) mission will carry the first combined spaceborne L-band radiometer and Synthetic Aperture Radar (SAR) system with the objective of mapping near-surface soil moisture and freeze/thaw state globally every 2-3 days. SMAP will provide three soil moisture products: i) high-resolution from radar (~3 km), ii) low-resolution from radiometer (~36 km), and iii) intermediate-resolution from the fusion of radar and radiometer (~9 km). The Soil Moisture Active Passive Experiments (SMAPEx) are a series of three airborne field experiments designed to provide prototype SMAP data for the development and validation of soil moisture retrieval algorithms applicable to the SMAP mission. This paper describes the SMAPEx sampling strategy and presents an overview of the data collected during the three experiments: SMAPEx-1 (July 5-10, 2010), SMAPEx-2 (December 4-8, 2010) and SMAPEx-3 (September 5-23, 2011). The SMAPEx experiments were conducted in a semi-arid agricultural and grazing area located in southeastern Australia, timed so as to acquire data over a seasonal cycle at various stages of the crop growth. Airborne L-band brightness temperature (~1 km) and radar backscatter (~10 m) observations were collected over an area the size of a single SMAP footprint (38 km × 36 km at 35° latitude) with a 2-3 days revisit time, providing SMAP-like data for testing of radiometer-only, radar-only and combined radiometer-radar soil moisture retrieval and downscaling algorithms. Airborne observations were supported by continuous monitoring of near-surface (0-5 cm) soil moisture along with intensive ground monitoring of soil moisture, soil temperature, vegetation biomass and structure, and surface roughness.


IEEE Geoscience and Remote Sensing Letters | 2009

Improved Understanding of Soil Surface Roughness Parameterization for L-Band Passive Microwave Soil Moisture Retrieval

Rocco Panciera; Jeffrey P. Walker; Olivier Merlin

Surface roughness parameterization plays an important role in soil moisture retrieval from passive microwave observations. This letter investigates the parameterization of surface roughness in the retrieval algorithm adopted by the Soil Moisture and Ocean Salinity mission, making use of experimental airborne and ground data from the National Airborne Field Experiment held in Australia in 2005. The surface roughness parameter is retrieved from high-resolution (60 m) airborne data in different soil moisture conditions, using the ground soil moisture as input of the model. The effect of surface roughness on the emitted signal is found to change with the soil moisture conditions with a law different from that proposed in previous studies. The magnitude of this change is found to be related to soil textural properties: in clay soils, the effect of surface roughness is higher in intermediate wetness conditions (0.2-0.3 v/v) and decreases on both the dry and wet ends. Consequently, this letter calls for a rethink of surface roughness parameterization in microwave emission modeling.


IEEE Transactions on Geoscience and Remote Sensing | 2010

Validation of the ASAR Global Monitoring Mode Soil Moisture Product Using the NAFE'05 Data Set

Iliana Mladenova; Venkat Lakshmi; Jeffrey P. Walker; Rocco Panciera; W. Wagner; Marcela Doubkova

The Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) mode offers an opportunity for global soil moisture (SM) monitoring at much finer spatial resolution than that provided by the currently operational Advanced Microwave Scanning Radiometer for the Earth Observing System and future planned missions such as Soil Moisture and Ocean Salinity and Soil Moisture Active Passive. Considering the difficulties in modeling the complex soil-vegetation scattering mechanisms and the great need of ancillary data for microwave backscatter SM inversion, algorithms based on temporal change are currently the best method to examine SM variability. This paper evaluates the spatial sensitivity of the ASAR GM surface SM product derived using the temporal change detection methodology developed by the Vienna University of Technology. This evaluation is made for an area in southeastern Australia using data from the National Airborne Field Experiment 2005. The spatial evaluation is made using three different types of SM data (station, field, and airborne) across several different scales (1-25 km). Results confirmed the expected better agreement when using point (R station = 0.75) data as compared to spatial (R PLMR, 1 km = 0.4) data. While the aircraft-ASAR GM correlation values at 1-km resolution were low, they significantly improved when averaged to 5 km (R PLMR, 5 km = 0.67) or coarser. Consequently, this assessment shows the ASAR GM potential for monitoring SM when averaged to a spatial resolution of at least 5 km.


IEEE Geoscience and Remote Sensing Letters | 2009

Parameterization of the Land Parameter Retrieval Model for L-Band Observations Using the NAFE'05 Data Set

R.A.M. de Jeu; Thomas R. H. Holmes; Rocco Panciera; Jeffrey P. Walker

The Land Parameter Retrieval Model (LPRM) has been successfully applied to retrieve soil moisture from space-borne passive microwave observations at C-, X-, or Ku-band and high incidence angles (50deg-55deg). However, LPRM had never been applied to lower angles or to L-band observations. This letter describes the parameterization and performance of LPRM using aircraft and ground data from the National Airborne Field Experiment 2005. This experiment was undertaken in November 2005 in the Goulburn River catchment, which is located in southeastern Australia. It was found that model convergence could only be achieved with a temporally dynamic roughness. The roughness was parameterized according to incidence angle and soil moisture. These findings were integrated in LPRM, resulting in one uniform parameterization for all sites. The parameterized LPRM correlated well with field observations at 5-cm depth (r = 0.93 based on all sites) with a negligible bias and an accuracy of 0.06 m3middotm-3. These results demonstrate comparable retrieval accuracies as the official SMOS soil-moisture retrieval algorithm (L-MEB), but without the need for the ancillary data that are required by L-MEB. However, care should be taken when using the proposed dynamic roughness model as it is based on a limited data set, and a more thorough evaluation is necessary to test the validity of this new approach to a wider range of conditions.


IEEE Geoscience and Remote Sensing Letters | 2009

Assessing the SMOS Soil Moisture Retrieval Parameters With High-Resolution NAFE'06 Data

Olivier Merlin; Jeffrey P. Walker; Rocco Panciera; Maria José Escorihuela; Thomas J. Jackson

The spatial and temporal invariance of Soil Moisture and Ocean Salinity (SMOS) forward model parameters for soil moisture retrieval was assessed at 1-km resolution on a diurnal basis with data from the National Airborne Field Experiment 2006. The approach used was to apply the SMOS default parameters uniformly over 27 1-km validation pixels, retrieve soil moisture from the airborne observations, and then to interpret the differences between airborne and ground estimates in terms of land use, parameter variability, and sensing depth. For pastures (17 pixels) and nonirrigated crops (5 pixels), the root mean square error (rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of 0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels), the rmse was 0.10 vol./vol., and the bias was -0.09 vol./vol. The correlation coefficient between bias in irrigated areas and the 1-km field soil moisture variability was found to be 0.73, which suggests either 1) an increase of the soil dielectric roughness (up to about one) associated with small-scale heterogeneity of soil moisture or/and 2) a difference in sensing depth between an L-band radiometer and the in situ measurements, combined with a strong vertical gradient of soil moisture in the top 6 cm of the soil.


IEEE Transactions on Geoscience and Remote Sensing | 2014

Evaluation of IEM, Dubois, and Oh Radar Backscatter Models Using Airborne L-Band SAR

Rocco Panciera; Mihai A. Tanase; Kim Lowell; Jeffrey P. Walker

The backscatter predicted by three common surface scattering models (the Integral Equation Model (IEM), the Dubois, and the Oh models) was evaluated against fully polarized L-band airborne observations. Before any site-specific calibration, the Oh model was found to be the most accurate among the three, with mean errors between the simulated and the observed backscatter of 1.2 dB ( ±2.6 dB standard deviation of the error) and -0.4 dB ( ±2.4 dB) for HH and VV polarizations, respectively, while the IEM and Dubois presented larger errors, with a maximum of 4.5 dB ( ±2 dB) for the IEM in VV polarization. The backscatter errors were observed to be related to surface roughness, another major factor determining the electromagnetic scattering at the soil surface. An existing semiempirical calibration of the surface roughness correlation length was therefore applied to improve the mismatch between modeled and observed backscatters. The application of the semiempirical calibration led to a significant improvement of the backscatter prediction for the IEM. After calibration, the IEM outperformed the Oh model, resulting in a mean backscatter error of -0.3 dB ( ±1.1 dB) and -0.2 ( ±1.2 dB) for HH and VV polarizations, respectively. To test the robustness of the semiempirical calibration, calibration functions derived from an independent data set were applied and shown to also improve the (uncalibrated) IEM performance, suggesting that the calibration procedure is relatively robust for global application.


Geophysical Research Letters | 2007

Dry‐end surface soil moisture variability during NAFE'06

A. J. Teuling; R. Uijlenhoet; R. T. W. L. Hurkmans; Olivier Merlin; Rocco Panciera; Jeffrey P. Walker; Peter Troch

[1] Characterization of the space-time variability of soil moisture is important for land surface and climate studies. Here we develop an analytical model to investigate how, at the dry-end of the soil moisture range, the main characteristics of the soil moisture field (spatial mean and variability, steady state distribution) depend on the intermittent character of low intensity rain storms. Our model is in good agreement with data from the recent National Airborne Field Experiment (NAFE’06) held in the semiarid Australian Murrumbidgee catchment. We find a positive linear relationship between mean soil moisture and its associated variability, and a strong dependency of the temporal soil moisture distribution to the amount and structure of precipitation. Citation: Teuling, A. J., R. Uijlenhoet, R. Hurkmans, O. Merlin, R. Panciera, J. P. Walker, and P. A. Troch (2007), Dry-end surface soil moisture variability during NAFE’06, Geophys. Res. Lett., 34, L17402, doi:10.1029/ 2007GL031001.


IEEE Transactions on Geoscience and Remote Sensing | 2012

Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band

Sandy Peischl; Jeffrey P. Walker; Dongryeol Ryu; Yann Kerr; Rocco Panciera; Christoph Rüdiger

The multiangle observation capability of the Soil Moisture and Ocean Salinity mission is expected to significantly improve the inversion of soil microwave emissions for soil moisture, by enabling the simultaneous retrieval of the vegetation optical depth and other surface parameters. Consequently, this paper investigates the relationship between soil moisture and brightness temperature at multiple incidence angles using airborne L-band data from the National Airborne Field Experiment in Australia in 2005. A forward radio brightness model was used to predict the passive microwave response at a range of incidence angles, given the following inputs: 1) ground-measured soil and vegetation properties and 2) default model parameters for vegetation and roughness characterization. Simulations were made across various dates and locations with wheat cover and evaluated against the available airborne observations. The comparison showed a significant underestimation of the measured brightness temperatures by the model. This discrepancy subsequently led to soil moisture retrieval errors of up to 0.3 m3/m3. Further analysis found the following: 1) The roughness value HR was too low, which was then adjusted as a function of the soil moisture, and 2) the vegetation structure parameters tth and ttv required optimization, yielding new values of tth = 0.2 and ttv = 1.4 from calibration to a single flight. Testing the optimized parameterization for different moisture conditions and locations found that the root-mean-square simulation error between the forward model predictions and the airborne observations was improved from 31.3 K (26.5 K) to 2.3 K (5.3 K) for wet (dry) soil moisture condition.


IEEE Transactions on Geoscience and Remote Sensing | 2015

Simulation of the SMAP Data Stream From SMAPEx Field Campaigns in Australia

Xiaoling Wu; Jeffrey P. Walker; Christoph Rüdiger; Rocco Panciera; Douglas A. Gray

NASAs Soil Moisture Active Passive (SMAP) mission will provide a ~10-km resolution global soil moisture product with a 2-3-day revisit by exploiting the synergy between active and passive observations. However, soil moisture downscaling techniques required to exploit this synergy have not yet received extensive testing, being limited to mostly synthetic data. Consequently, airborne field campaigns such as the SMAP Experiments (SMAPEx) have been designed to provide experimental data to fill this gap. The objective of this study is to assess the reliability of SMAP prototype data stream derived from airborne observations, with the aim of providing a simulated SMAP data set for prelaunch algorithm development of SMAP. Specifically, the reliability of incidence-angle normalization and spatial resolution aggregation for airborne observations was assessed for this purpose. The impact of azimuthal angle on active-passive observations was analyzed to assess the potential influence of SMAP rotating antenna on observations. Results showed that the accuracies of angle normalization were ~0.8 dB for active and 2.4 K for the passive observations (1-km resolution), while the uncertainties associated with spatial upscaling were 2.7 dB (150-m resolution) and 2 K (1-km resolution). Although azimuthal signatures associated with the variable orientation of surface features were observed in the high-resolution observations, these tended to be smoothed when aggregating to coarser resolution. As these errors are expected to decrease further at the coarser resolution of SMAP, results suggested that data from SMAPEx can be reliably used to simulate SMAP data for subsequent use in active-passive soil moisture algorithm development.

Collaboration


Dive into the Rocco Panciera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. D. Kalma

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward J. Kim

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Kim Lowell

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Jackson

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge