Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roch-Philippe Charles is active.

Publication


Featured researches published by Roch-Philippe Charles.


Journal of Cell Biology | 2005

The epidermal barrier function is dependent on the serine protease CAP1/Prss8

Céline Leyvraz; Roch-Philippe Charles; Isabelle Rubera; Marjorie Guitard; Samuel Rotman; Bernadette Breiden; Konrad Sandhoff; Edith Hummler

Serine proteases are proteolytic enzymes that are involved in the regulation of various physiological processes. We generated mice lacking the membrane-anchored channel-activating serine protease (CAP) 1 (also termed protease serine S1 family member 8 [Prss8] and prostasin) in skin, and these mice died within 60 h after birth. They presented a lower body weight and exhibited severe malformation of the stratum corneum (SC). This aberrant skin development was accompanied by an impaired skin barrier function, as evidenced by dehydration and skin permeability assay and transepidermal water loss measurements leading to rapid, fatal dehydration. Analysis of differentiation markers revealed no major alterations in CAP1/Prss8-deficient skin even though the epidermal deficiency of CAP1/Prss8 expression disturbs SC lipid composition, corneocyte morphogenesis, and the processing of profilaggrin. The examination of tight junction proteins revealed an absence of occludin, which did not prevent the diffusion of subcutaneously injected tracer (∼600 D) toward the skin surface. This study shows that CAP1/Prss8 expression in the epidermis is crucial for the epidermal permeability barrier and is, thereby, indispensable for postnatal survival.


Journal of Immunology | 2004

Transient and Selective NF-κB p65 Serine 536 Phosphorylation Induced by T Cell Costimulation Is Mediated by IκB Kinase β and Controls the Kinetics of p65 Nuclear Import

Ivan Mattioli; Andrea Sebald; Cyril Bucher; Roch-Philippe Charles; Hiroyasu Nakano; Takahiro Doi; Michael Kracht; M. Lienhard Schmitz

Full transcriptional activity of the nuclear, DNA-bound form of NF-κB requires additional posttranslational modifications. In this study, we systematically mapped the T cell costimulation-induced phosphorylation sites within the C-terminal half of the strongly trans-activating NF-κB p65 subunit and identified serine 536 as the main phosphorylation site. The transient kinetics of serine 536 phosphorylation paralleled the kinetics of IκBα and IκB kinase (IKK) phosphorylation and also mirrored the principle of T cell costimulation. The TCR-induced pathway leading to serine 536 phosphorylation is regulated by the kinases Cot (Tpl2), receptor interacting protein, protein kinase Cθ, and NF-κB-inducing kinase, but is independent from the phosphatidylinositol 3-kinase/Akt signaling pathway. Loss-of-function and gain-of-function experiments showed phosphorylation of p65 serine 536 by IKKβ, but not by IKKα. Phosphorylation occurs within the cytoplasmic and intact NF-κB/IκBα complex and requires prior phosphorylation of IκBα at serines 32 and 36. Reconstitution of p65−/− cells either with wild-type p65 or a p65 mutant containing a serine to alanine mutation revealed the importance of this phosphorylation site for cytosolic IκBα localization and the kinetics of p65 nuclear import.


Cancer Research | 2011

Mutationally Activated BRAFV600E Elicits Papillary Thyroid Cancer in the Adult Mouse

Roch-Philippe Charles; Gioia Iezza; Elena Amendola; David Dankort; Martin McMahon

Mutated BRAF is detected in approximately 45% of papillary thyroid carcinomas (PTC). To model PTC, we bred mice with adult-onset, thyrocyte-specific expression of BRAF(V600E). One month following BRAF(V600E) expression, mice displayed increased thyroid size, widespread alterations in thyroid architecture, and dramatic hypothyroidism. Over 1 year, without any deliberate manipulation of tumor suppressor genes, all mice developed PTC displaying nuclear atypia and marker expression characteristic of the human disease. Pharmacologic inhibition of MEK1/2 led to decreased thyroid size, restoration of thyroid form and function, and inhibition of tumorigenesis. Mice with BRAF(V600E)-induced PTC will provide an excellent system to study thyroid tumor initiation and progression and the evaluation of inhibitors of oncogenic BRAF signaling.


Embo Molecular Medicine | 2010

ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1

Carole Planès; Nadia Randrianarison; Roch-Philippe Charles; Simona Frateschi; Françoise Cluzeaud; Grégoire Vuagniaux; Paul Soler; Christine Clerici; Bernard C. Rossier; Edith Hummler

Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane‐bound channel‐activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre‐loxP‐mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC‐mediated sodium currents. Sodium‐driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8‐deficient mice, due to a 48% decrease in amiloride‐sensitive clearance, and was less sensitive to β2‐agonist treatment. Intra‐alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by β2‐agonists. Finally, acute volume‐overload increased alveolar lining fluid volume in CAP1/Prss8‐deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC‐mediated alveolar sodium and water transport and in mouse lung fluid balance.


Nature Communications | 2011

PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin

Simona Frateschi; Eric Camerer; Giovanna Crisante; Sarah Rieser; Mathieu Membrez; Roch-Philippe Charles; Friedrich Beermann; Jean-Christophe Stehle; Bernadette Breiden; Konrad Sandhoff; Samuel Rotman; Marek Haftek; Anne Wilson; Stephan Ryser; Martin Steinhoff; Shaun R. Coughlin; Edith Hummler

Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3PAR2/+), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases.


American Journal of Physiology-renal Physiology | 2008

Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3.

Sheerazed Boulkroun; Dorothée Ruffieux-Daidié; Jean-Jacques Vitagliano; Olivier Poirot; Roch-Philippe Charles; Dagmara Lagnaz; Dmitri Firsov; Stephan Kellenberger; Olivier Staub

Adjustment of Na+ balance in extracellular fluids is achieved by regulated Na+ transport involving the amiloride-sensitive epithelial Na+ channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+ channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+ currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of alpha- and gamma-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channels cell surface expression, similarly to Usp10. In mCCD(cl1) cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC.


Developmental Biology | 2012

E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor.

Chun-Ying Li; Wanghee Cha; Hans-Ulrich Luder; Roch-Philippe Charles; Martin McMahon; Thimios A. Mitsiadis; Ophir D. Klein

Stem cells are essential for the regeneration and homeostasis of many organs, such as tooth, hair, skin, and intestine. Although human tooth regeneration is limited, a number of animals have evolved continuously growing teeth that provide models of stem cell-based organ renewal. A well-studied model is the mouse incisor, which contains dental epithelial stem cells in structures known as cervical loops. These stem cells produce progeny that proliferate and migrate along the proximo-distal axis of the incisor and differentiate into enamel-forming ameloblasts. Here, we studied the role of E-cadherin in behavior of the stem cells and their progeny. Levels of E-cadherin are highly dynamic in the incisor, such that E-cadherin is expressed in the stem cells, downregulated in the transit-amplifying cells, re-expressed in the pre-ameloblasts and then downregulated again in the ameloblasts. Conditional inactivation of E-cadherin in the cervical loop led to decreased numbers of label-retaining stem cells, increased proliferation, and decreased cell migration in the mouse incisor. Using both genetic and pharmacological approaches, we showed that Fibroblast Growth Factors regulate E-cadherin expression, cell proliferation and migration in the incisor. Together, our data indicate that E-cadherin is an important regulator of stem cells and their progeny during growth of the mouse incisor.


Molecular Cancer Research | 2014

Activating BRAF and PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis

Roch-Philippe Charles; Jillian M. Silva; Gioia Iezza; Wayne A. Phillips; Martin McMahon

Thyroid malignancies are the most common type of endocrine tumors. Of the various histologic subtypes, anaplastic thyroid carcinoma (ATC) represents a subset of all cases but is responsible for a significant proportion of thyroid cancer-related mortality. Indeed, ATC is regarded as one of the more aggressive and hard to treat forms of cancer. To date, there is a paucity of relevant model systems to critically evaluate how the signature genetic abnormalities detected in human ATC contribute to disease pathogenesis. Mutational activation of the BRAF protooncogene is detected in approximately 40% of papillary thyroid carcinoma (PTC) and in 25% of ATC. Moreover, in ATC, mutated BRAF is frequently found in combination with gain-of-function mutations in the p110 catalytic subunit of PI3′-Kinase (PIK3CA) or loss-of-function alterations in either the p53 (TP53) or PTEN tumor suppressors. Using mice with conditional, thyrocyte-specific expression of BRAFV600E, we previously developed a model of PTC. However, as in humans, BRAFV600E-induced mouse PTC is indolent and does not lead to rapid development of end-stage disease. Here, we use mice carrying a conditional allele of PIK3CA to demonstrate that, although mutationally activated PIK3CAH1047R is unable to drive transformation on its own, when combined with BRAFV600E in thyrocytes, this leads to development of lethal ATC in mice. Combined, these data demonstrate that the BRAFV600E cooperates with either PIK3CAH1074R or with silencing of the tumor-suppressor PTEN, to promote development of anaplastic thyroid carcinoma. Implications: This genetically relevant mouse model of ATC will be an invaluable platform for preclinical testing of pathway-targeted therapies for the prevention and treatment of thyroid carcinoma. Mol Cancer Res; 12(7); 979–86. ©2014 AACR.


Journal of Biological Chemistry | 2008

Postnatal Requirement of the Epithelial Sodium Channel for Maintenance of Epidermal Barrier Function

Roch-Philippe Charles; Marjorie Guitard; Céline Leyvraz; Bernadette Breiden; Marek Haftek; Zofia Haftek-Terreau; Jean-Christophe Stehle; Konrad Sandhoff; Edith Hummler

In skin, the physiological consequence of an epithelial sodium channel (ENaC) deficiency is not obvious directly at birth. Nevertheless, within hours after birth, mice deficient for the α-subunit of the highly amiloride-sensitive epithelial sodium channel (αENaC/Scnn1a) suffer from a significant increased dehydration. This is characterized by a loss of body weight (by 6% in 6 h) and an increased transepidermal water loss, which is accompanied by a higher skin surface pH in 1-day-old pups. Although early and late differentiation markers, as well as tight junction protein distribution and function, seem unaffected, deficiency of αENaC severely disturbs the stratum corneum lipid composition with decreased ceramide and cholesterol levels, and increased pro-barrier lipids, whereas covalently bound lipids are drastically reduced. Ultrastructural analysis revealed morphological changes in the formation of intercellular lamellar lipids and the lamellar body secretion. Extracellular formation of the lamellar lipids proved to be abnormal in the knockouts. In conclusion, ENaC deficiency results in progressive dehydration and, consequently, weight loss due to severe impairment of lipid formation and secretion. Our data demonstrate that ENaC expression is required for the postnatal maintenance of the epidermal barrier function but not for its generation.


Journal of The American Society of Nephrology | 2014

Colon-Specific Deletion of Epithelial Sodium Channel Causes Sodium Loss and Aldosterone Resistance

Sumedha Malsure; Qing Wang; Roch-Philippe Charles; Chloé Sergi; Romain Perrier; Birgitte Mønster Christensen; Marc Maillard; Bernard C. Rossier; Edith Hummler

Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.

Collaboration


Dive into the Roch-Philippe Charles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin McMahon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Friedrich Beermann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge