Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rocío Ponce Ortiz is active.

Publication


Featured researches published by Rocío Ponce Ortiz.


Chemical Reviews | 2010

High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors

Rocío Ponce Ortiz; Antonio Facchetti; Tobin J. Marks

2.2. Interface Trapping Effects 211 3. High-k Dielectric Materials for OFETs 212 3.1. Inorganic Dielectrics 212 3.1.1. Aluminum Oxide 213 3.1.2. Tantalum Oxide 215 3.1.3. Titanium Dioxide 216 3.1.4. Hafnium Dioxide 217 3.1.5. Zirconium Dioxide 218 3.1.6. Cerium Dioxide 218 3.2. Organic Dielectrics 218 3.2.1. Polymer Dielectrics 218 3.2.2. Self-Assembled Monoand Multilayers 225 3.3. Hybrid Dielectrics 227 3.3.1. Polymeric-Nanoparticle Composites 227 3.3.2. Inorganic-Organic Bilayers 232 3.3.3. Hybrid Solid Polymer Electrolytes 235 4. Summary 235 5. Acknowledgments 236 6. References 236


Journal of the American Chemical Society | 2012

Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues.

Xugang Guo; Nanjia Zhou; Sylvia J. Lou; Jonathan W. Hennek; Rocío Ponce Ortiz; Melanie R. Butler; Pierre Luc T Boudreault; Joseph Strzalka; Pierre Morin; Mario Leclerc; Juan T. López Navarrete; Mark A. Ratner; Lin X. Chen; R. P. H. Chang; Antonio Facchetti; Tobin J. Marks

Rational creation of polymeric semiconductors from novel building blocks is critical to polymer solar cell (PSC) development. We report a new series of bithiopheneimide-based donor-acceptor copolymers for bulk-heterojunction (BHJ) PSCs. The bithiopheneimide electron-deficiency compresses polymer bandgaps and lowers the HOMOs--essential to maximize power conversion efficiency (PCE). While the dithiophene bridge progression R(2)Si→R(2)Ge minimally impacts bandgaps, it substantially alters the HOMO energies. Furthermore, imide N-substituent variation has negligible impact on polymer opto-electrical properties, but greatly affects solubility and microstructure. Grazing incidence wide-angle X-ray scattering (GIWAXS) indicates that branched N-alkyl substituents increased polymer π-π spacings vs linear N-alkyl substituents, and the dithienosilole-based PBTISi series exhibits more ordered packing than the dithienogermole-based PBTIGe analogues. Further insights into structure-property-device performance correlations are provided by a thieno[3,4-c]pyrrole-4,6-dione (TPD)-dithienosilole copolymer PTPDSi. DFT computation and optical spectroscopy show that the TPD-based polymers achieve greater subunit-subunit coplanarity via intramolecular (thienyl)S···O(carbonyl) interactions, and GIWAXS indicates that PBTISi-C8 has lower lamellar ordering, but closer π-π spacing than does the TPD-based analogue. Inverted BHJ solar cells using bithiopheneimide-based polymer as donor and PC(71)BM as acceptor exhibit promising device performance with PCEs up to 6.41% and V(oc) > 0.80 V. In analogous cells, the TPD analogue exhibits 0.08 V higher V(oc) with an enhanced PCE of 6.83%, mainly attributable to the lower-lying HOMO induced by the higher imide group density. These results demonstrate the potential of BTI-based polymers for high-performance solar cells, and provide generalizable insights into structure-property relationships in TPD, BTI, and related polymer semiconductors.


Journal of the American Chemical Society | 2011

Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors.

Xugang Guo; Rocío Ponce Ortiz; Yan Zheng; Myung-Gil Kim; Shiming Zhang; Yan Hu; Gang Lu; Antonio Facchetti; Tobin J. Marks

We report a new p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stille coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (∼1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E(g)(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituents (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of ∼0.6 cm(2) V(-1) s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.


Journal of the American Chemical Society | 2011

Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structure−Property Correlations, Charge Carrier Polarity, and Device Stability

Xugang Guo; Rocío Ponce Ortiz; Yan Zheng; Yan Hu; Yong Young Noh; Kang Jun Baeg; Antonio Facchetti; Tobin J. Marks

Developing new high-mobility polymeric semiconductors with good processability and excellent device environmental stability is essential for organic electronics. We report the synthesis, characterization, manipulation of charge carrier polarity, and device air stability of a new series of bithiophene-imide (BTI)-based polymers for organic field-effect transistors (OFETs). By increasing the conjugation length of the donor comonomer unit from monothiophene (P1) to bithiophene (P2) to tetrathiophene (P3), the electron transport capacity decreases while the hole transport capacity increases. Compared to the BTI homopolymer P(BTimR) having an electron mobility of 10(-2) cm(2) V(-1) s(-1), copolymer P1 is ambipolar with balanced hole and electron mobilities of ∼10(-4) cm(2) V(-1) s(-1), while P2 and P3 exhibit hole mobilities of ∼10(-3) and ∼10(-2) cm(2) V(-1) s(-1), respectively. The influence of P(BTimR) homopolymer M(n) on film morphology and device performance was also investigated. The high M(n) batch P(BTimR)-H affords more crystalline film microstructures; hence, 3× increased electron mobility (0.038 cm(2) V(-1) s(-1)) over the low M(n) one P(BTimR)-L (0.011 cm(2) V(-1) s(-1)). In a top-gate/bottom-contact OFET architecture, P(BTimR)-H achieves a high electron mobility of 0.14 cm(2) V(-1) s(-1), only slightly lower than that of state-of-the-art n-type polymer semiconductors. However, the high-lying P(BTimR)-H LUMO results in minimal electron transport on exposure to ambient. Copolymer P3 exhibits a hole mobility approaching 0.1 cm(2) V(-1) s(-1) in top-gate OFETs, comparable to or slightly lower than current state-of-the-art p-type polymer semiconductors (0.1-0.6 cm(2) V(-1) s(-1)). Although BTI building block incorporation does not enable air-stable n-type OFET performance for P(BTimR) or P1, it significantly increases the OFET air stability for p-type P2 and P3. Bottom-gate/top-contact and top-gate/bottom-contact P2 and P3 OFETs exhibit excellent stability in the ambient. Thus, P2 and P3 OFET hole mobilities are almost unchanged after 200 days under ambient, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), induced by the strong BTI electron-withdrawing capacity. Complementary inverters were fabricated by inkjet patterning of P(BTimR)-H (n-type) and P3b (p-type).


Advanced Materials | 2012

Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells

Nanjia Zhou; Xugang Guo; Rocío Ponce Ortiz; Shiqiang Li; Shiming Zhang; Robert P. H. Chang; Antonio Facchetti; Tobin J. Marks

Bithiophene imide (BTI) and benzodithiophene (BDT) copolymers are synthesized for application in organic photovoltaic (OPV) cells. The electron deficiency of the BTI units leads to polymers with a low-lying HOMOs (∼-5.6 eV). Inverted solar cells are fabricated to investigate the OPV performance of the BTI-based polymers and achieve power conversion efficiencies up to 5.5%, with substantial V(oc)s above 0.9 V which are among the highest V(oc)s reported to date for polymer/PCBM solar cells. The results indicate that the BTI is a promising building block for constructing polymer donors for OPV applications.


ACS Nano | 2012

Fundamental Performance Limits of Carbon Nanotube Thin-Film Transistors Achieved Using Hybrid Molecular Dielectrics

Vinod K. Sangwan; Rocío Ponce Ortiz; Justice M. P. Alaboson; Jonathan D. Emery; Michael J. Bedzyk; Lincoln J. Lauhon; Tobin J. Marks; Mark C. Hersam

In the past decade, semiconducting carbon nanotube thin films have been recognized as contending materials for wide-ranging applications in electronics, energy, and sensing. In particular, improvements in large-area flexible electronics have been achieved through independent advances in postgrowth processing to resolve metallic versus semiconducting carbon nanotube heterogeneity, in improved gate dielectrics, and in self-assembly processes. Moreover, controlled tuning of specific device components has afforded fundamental probes of the trade-offs between materials properties and device performance metrics. Nevertheless, carbon nanotube transistor performance suitable for real-world applications awaits understanding-based progress in the integration of independently pioneered device components. We achieve this here by integrating high-purity semiconducting carbon nanotube films with a custom-designed hybrid inorganic-organic gate dielectric. This synergistic combination of materials circumvents conventional design trade-offs, resulting in concurrent advances in several transistor performance metrics such as transconductance (6.5 μS/μm), intrinsic field-effect mobility (147 cm(2)/(V s)), subthreshold swing (150 mV/decade), and on/off ratio (5 × 10(5)), while also achieving hysteresis-free operation in ambient conditions.


Nature Chemistry | 2016

Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals

Gabriel E. Rudebusch; José L. Zafra; Kjell Jorner; Kotaro Fukuda; Jonathan L. Marshall; Iratxe Arrechea-Marcos; Guzmán L. Espejo; Rocío Ponce Ortiz; Carlos J. Gómez-García; Lev N. Zakharov; Masayoshi Nakano; Henrik Ottosson; Juan Casado; Michael M. Haley

The consequence of unpaired electrons in organic molecules has fascinated and confounded chemists for over a century. The study of open-shell molecules has been rekindled in recent years as new synthetic methods, improved spectroscopic techniques and powerful computational tools have been brought to bear on this field. Nonetheless, it is the intrinsic instability of the biradical species that limits the practicality of this research. Here we report the synthesis and characterization of a molecule based on the diindeno[b,i]anthracene framework that exhibits pronounced open-shell character yet possesses remarkable stability. The synthetic route is rapid, efficient and possible on the gram scale. The molecular structure was confirmed through single-crystal X-ray diffraction. From variable-temperature Raman spectroscopy and magnetic susceptibility measurements a thermally accessible triplet excited state was found. Organic field-effect transistor device data show an ambipolar performance with balanced electron and hole mobilities. Our results demonstrate the rational design and synthesis of an air- and temperature-stable biradical compound.


Chemistry: A European Journal | 2010

Quinoidal Oligothiophenes: Towards Biradical Ground‐State Species

Rocío Ponce Ortiz; Juan Casado; Sandra Rodríguez González; Víctor Hernández; Juan T. López Navarrete; Pedro M. Viruela; Enrique Ortí; Kazuo Takimiya; Tetsuo Otsubo

A family of quinoidal oligothiophenes, from the dimer to the hexamer, with fused bis(butoxymethyl)cyclopentane groups has been extensively investigated by means of electronic and vibrational spectroscopy, electrochemical measurements, and density functional calculations. The latter predict that the electronic ground state always corresponds to a singlet state and that, for the longest oligomers, this state has biradical character that increases with increasing oligomer length. The shortest oligomers display closed-shell quinoidal structures. Calculations also predict the existence of very low energy excited triplet states that can be populated at room temperature. Aromatization of the conjugated carbon backbone is the driving force that determines the increasing biradical character of the ground state and the appearance of low-lying triplet states. UV/Vis, Raman, IR, and electrochemical experiments support the aromatic biradical structures predicted for the ground state of the longest oligomers and reveal that population of the low-lying triplet state accounts for the magnetic activity displayed by these compounds.


Journal of Materials Chemistry C | 2013

Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field Effect Transistors

Miriam Más-Montoya; Rocío Ponce Ortiz; David Curiel; Arturo Espinosa; Magali Allain; Antonio Facchetti; Tobin J. Marks

We report here the synthesis and characterization of a new family of isomeric carbazolocarbazole derivatives, namely carbazolo[1,2-a]carbazole, carbazolo[3,2-b]carbazole and carbazolo[4,3-c]carbazole. Thermal, optical, electrochemical, morphological and semiconducting properties have been studied to understand the influence of geometrical isomerism on the optoelectronic properties of these compounds. Different packing patterns have been observed by single crystal X-ray diffraction (XRD) which then correlate with the different morphologies of the evaporated thin films studied by XRD and Atomic Force Microscopy (AFM). The effect of N-substituents has also been evaluated for one of the isomers revealing a noticeable influence on the performance as organic semiconductors in Organic Field Effect Transistors (OFETs). A good p-channel field effect has been determined for N,N′-dioctylcarbazolo[4,3-c]carbazole with a mobility of 0.02 cm2 V−1 s−1 and Ion/Ioff ratio of 106 in air. These preliminary results demonstrate the promising properties of molecular carbazolocarbazole systems which should be further explored in the area of organic semiconducting materials.


Materials | 2010

Azine- and azole-functionalized oligó and polythiophene semiconductors for organic thin-film transistors

Rocío Ponce Ortiz; He Yan; Antonio Facchetti; Tobin J. Marks

In the organic electronics research field, several strategies have been used to modulate the transport properties of thiophene-derived semiconductors via sequential functionalization of their π-conjugated cores. This review summarizes the major design and synthetic strategies for tuning thiophene-containing small molecule and polymer properties by introducing electron-deficient nitrogen-containing azine and azole moieties. Several examples are presented which elucidate the structural, optical, and electronic consequences of incorporating these electron-deficient fragments in the conjugated skeletons, particularly relating to applications in organic thin-film transistors.

Collaboration


Dive into the Rocío Ponce Ortiz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xugang Guo

South University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge