Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rocio Rodriguez-Juarez is active.

Publication


Featured researches published by Rocio Rodriguez-Juarez.


Biomedical Optics Express | 2013

Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue.

Lyubov V. Titova; A. Ayesheshim; Andrey Golubov; Dawson Fogen; Rocio Rodriguez-Juarez; Frank A. Hegmann; Olga Kovalchuk

Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).


Molecular Carcinogenesis | 2007

Epigenetic reprogramming of liver cells in tamoxifen-induced rat hepatocarcinogenesis.

Volodymyr Tryndyak; Olga Kovalchuk; Levan Muskhelishvili; Beverly Montgomery; Rocio Rodriguez-Juarez; Stepan Melnyk; Sharon A. Ross; Frederick A. Beland; Igor P. Pogribny

Tamoxifen, a nonsteroidal anti‐estrogen, is a potent genotoxic hepatocarcinogen in rats, with both tumor initiating and promoting properties. Recently it has been demonstrated that genotoxic carcinogens, in addition to exerting genotoxic effects, often cause epigenetic alterations and these induced epigenetic changes may play important mechanistic role in carcinogenesis. In the present study, we investigated the role of tamoxifen‐induced epigenetic changes in hepatocarcinogenic process. The results of the study showed that exposure of female F344 rats to tamoxifen resulted in progressive loss of CpG methylation in regulatory sequences of long interspersed nucleotide elements (LINE‐1) and prominent increase in expression of LINE‐1 elements and c‐myc proto‐oncogene. The accumulation of tamoxifen‐induced DNA lesions was accompanied by the decreased level of Rad51, Ku70, and DNA polymerase β (Polβ) proteins that play a crucial role in maintenance of genomic stability. Furthermore, feeding rats with tamoxifen‐containing diet led to increased regenerative cell proliferation, as indicated by the increased level of Ki‐67 and proliferating cell nuclear antigen (PCNA) proteins. These data indicate that exposure of animals to genotoxic hepatocarcinogen tamoxifen led to early phenotypical alterations in livers characterized by emergence of epigenetically reprogrammed cells with a specific cancer‐related epigenetic phenotype prior to tumor formation.


Scientific Reports | 2013

Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue?

Lyubov V. Titova; A. Ayesheshim; Andrey Golubov; Rocio Rodriguez-Juarez; Rafal Woycicki; Frank A. Hegmann; Olga Kovalchuk

Terahertz (THz) radiation lies between the infrared and microwave regions of the electromagnetic spectrum and is non-ionizing. We show that exposure of artificial human skin tissue to intense, picosecond-duration THz pulses affects expression levels of numerous genes associated with non-melanoma skin cancers, psoriasis and atopic dermatitis. Genes affected by intense THz pulses include nearly half of the epidermal differentiation complex (EDC) members. EDC genes, which are mapped to the chromosomal human region 1q21, encode for proteins that partake in epidermal differentiation and are often overexpressed in conditions such as psoriasis and skin cancer. In nearly all the genes differentially expressed by exposure to intense THz pulses, the induced changes in transcription levels are opposite to disease-related changes. The ability of intense THz pulses to cause concerted favorable changes in the expression of multiple genes implicated in inflammatory skin diseases and skin cancers suggests potential therapeutic applications of intense THz pulses.


Aging (Albany NY) | 2016

Sex-specific effects of cytotoxic chemotherapy agents cyclophospha-mide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus – an aging connection

Anna Kovalchuk; Rocio Rodriguez-Juarez; Yaroslav Ilnytskyy; Boseon Byeon; Svitlana Shpyleva; Stepan Melnyk; Igor P. Pogribny; Bryan Kolb; Olga Kovalchuk

Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs—cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2′-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brains aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis.


Proceedings of SPIE | 2013

Intense picosecond THz pulses alter gene expression in human skin tissue in vivo

Lyubov V. Titova; A. Ayesheshim; Andrey Golubov; Rocio Rodriguez-Juarez; Anna Kovalchuk; Frank A. Hegmann; Olga Kovalchuk

Pulsed terahertz (THz) imaging has been suggested as a novel high resolution, noninvasive medical diagnostic tool. However, little is known about the influence of pulsed THz radiation on human tissue, i.e., its genotoxicity and effects on cell activity and cell integrity. We have carried out a comprehensive investigation of the biological effects of THz radiation on human skin tissue using a high power THz pulse source and an in vivo full-thickness human skin tissue model. We have observed that exposure to intense THz pulses causes DNA damage and changes in the global gene expression profile in the exposed skin tissue. Several of the affected genes are known to play major roles in human cancer. While the changes in the expression levels of some of them suggest possible oncogenic effects of pulsed THz radiation, changes in the expression of the other cancer-related genes might have a protective influence. This study may serve as a roadmap for future investigations aimed at elucidating the exact roles that all the affected genes play in skin carcinogenesis and in response to pulsed THz radiation.


Environmental Epigenetics | 2016

Fractionated low-dose exposure to ionizing radiation leads to DNA damage, epigenetic dysregulation, and behavioral impairment

Igor Koturbash; Nafisa M. Jadavji; Kristy Kutanzi; Rocio Rodriguez-Juarez; Dmitry Kogosov; Gerlinde A. Metz; Olga Kovalchuk

Studies of Fractionated Exposure to Low Doses of Ionizing Radiation (FELDIR) has become of increasing importance to clinical interventions. Its consequences on DNA damage, physical, and mental health have been insufficiently investigated, however. The goal of this study was to determine the effects of FELDIR on the brain using a mouse model. We addressed the levels of DNA damage, global genomic methylation, and DNA methylation machinery in cerebellum, frontal lobe, olfactory bulb and hippocampal tissues, as well as behavioral changes linked to FELDIR exposure. The results reveal increased levels of DNA damage, as reflected by increased occurrence of DNA Strand Breaks (SBs) and dysregulation of stress-response kinase p38. FELDIR also resulted in initial loss of global genomic methylation and altered expression of methyltransferases DNMT1 (down-regulation) and DNMT3a (up-regulation), as well as methyl-binding protein MeCP2 (up-regulation). FELDIR-associated behavioral changes included impaired skilled limb placement on a ladder rung task, increased rearing activity in an open field, and elevated anxiety-like behaviors. The said alterations showed significant dose and tissue specificity. Thus, FELDIR represents a critical impact on DNA integrity and behavioral outcomes that need to be considered in the design of clinical intervention studies.


Cancer Biology & Therapy | 2013

Novel antioxidants are not toxic to normal tissues but effectively kill cancer cells

Anna Kovalchuk; Felix Aladedunye; Rocio Rodriguez-Juarez; Dongping Li; James E. Thomas; Olga Kovalchuk; Roman Przybylski

Free radicals are formed as a result of cellular processes and play a key role in predisposition to and development of numerous diseases and of premature aging. Recently, we reported the syntheses of a number of novel phenolic antioxidants for possible application in food industry. In the present study, analyses of the cellular processes and molecular gene expression effects of some of the novel antioxidants in normal human tissues and in cancer cells were undertaken. Results indicated that whereas the examined antioxidants showed no effects on morphology and gene expression of normal human oral and gingival epithelial tissues, they exerted a profound cell killing effect on breast cancer cells, including on chemotherapy-resistant breast cancer cells and on oral squamous carcinoma cells. Among the tested antioxidants, N-decyl-N-(3-methoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide and N-decyl-N-(3,5-dimethoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide were the most promising, with excellent potential for cancer treatment. Moreover, our gene expression databases can be used as a roadmap for future analysis of mechanisms of antioxidant action.


Oncotarget | 2018

Adverse effects of paternal chemotherapy exposure on the progeny brain: intergenerational chemobrain

Anna Kovalchuk; Yaroslav Ilnytskyy; Rafal Woycicki; Rocio Rodriguez-Juarez; Gerlinde A. Metz; Olga Kovalchuk

Recent advances in cancer treatments have led to significant increases in cure rates. Most cancer patients are treated with various cytotoxic chemotherapy regimens. These treatment modalities are mutagenic and genotoxic and cause a wide array of late-occurring health problems, and even exert a deleterious influence on future offspring. The adverse effects from exposed parents on offspring are referred to as transgenerational effects, and currently little is known about chemotherapy-induced transgenerational effects. Furthermore, transgenerational effects have not been studied in the brains of progeny of exposed parents. In this study, we analyzed the existence and molecular nature of transgenerational effects in the brains of progeny of animals exposed to three common chemotherapy agents: cyclophosphamide (CPP), procarbazine (PCB) and mitomycin C (MMC). For the first time, our results show that paternal exposure to chemotherapy drugs causes transgenerational changes in the brain of unexposed progeny. Although no DNA damage was observed in terms of γH2AX levels, some alterations were found in levels of PCNA, protein involved in DNA repair, replication and profileration. Furthermore, there were changes in proliferation and apoptosis proteins BCL2 and AKT1, the proteins associated with DNA methylation, DNMT1 and MeCP2. Some altered expression trends were noted in proteins involved in myelin biogenesis, MBP and MYT1L. Moreover, global transcriptome profiling revealed changes in over 200 genes in the whole brains of progeny of animals exposed to CPP, and the changes in the levels of FOXP2 and ELK1proteins were confirmed by western blot analysis. These findings suggest that paternal chemotherapy significantly affects offspring brain development and may affect brain functioning. This research provides a key roadmap for future investigations of the novel phenomenon of transgenerational effects of chemotherapy in the brain of progeny of exposed parents.


Oncogenesis | 2018

A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382

Bo Wang; Dongping Li; Jody Filkowski; Rocio Rodriguez-Juarez; Quinn Storozynsky; Megan Malach; Emily Carpenter; Olga Kovalchuk

Antiestrogen resistance is a major challenge encountered during the treatment of estrogen receptor alpha positive (ERα+) breast cancer. A better understanding of signaling pathways and downstream transcription factors and their targets may identify key molecules that can overcome antiestrogen resistance in breast cancer. An aberrant expression of miR-22 has been demonstrated in breast cancer; however, its contribution to breast cancer resistance to fulvestrant, an antiestrogen drug, remains unknown. In this study, we demonstrated a moderate elevation in miR-22 expression in the 182R-6 fulvestrant-resistant breast cancer line we used as a model system, and this elevation was positively correlated with the expression of the miRNA biogenesis enzymes AGO2 and Dicer. The level of phosphorylated HER2/neu at Tyr877 was also upregulated in these cells, whereas the level of RelA/p65 phosphorylated at Ser536 (p-p65) was downregulated. Knockdown of HER2/neu led to an induction of p-p65 and a reduction in miR-22 levels. Luciferase assays identified two NF-κB binding motifs in the miR-22 promoter that contributed to transcriptional repression of miR-22. Activation of RelA/p65, triggered by LPS, attenuated miR-22 expression, but this expression was restored by sc-514, a selective IKKβ inhibitor. Inhibition of miR-22 suppressed cell proliferation, induced apoptosis and caused cell cycle S-phase arrest, whereas enhancing expression of p21Cip1/Waf1 and p27Kip1. Surprisingly, ectopic expression of miR-22 also suppressed cell proliferation, induced apoptosis, caused S-phase arrest, and promoted the expression of p21Cip1/Waf1 and p27Kip1. Ectopic overexpression of miR-22 repressed the expression of FOXP1 and HDAC4, leading to a marked induction of acetylation of HDAC4 target histones. Conversely, inhibition of miR-22 promoted the expression of both FOXP1 and HDAC4, without the expected attenuation of histone acetylation. Instead, p53 acetylation at lysine 382 was unexpectedly upregulated. Taken together, our findings demonstrated, for the first time, that HER2 activation dephosphorylates RelA/p65 at Ser536. This dephosphoryalted p65 may be pivotal in transactivation of miR-22. Both increased and decreased miR-22 expression cause resensitization of fulvestrant-resistant breast cancer cells to fulvestrant. HER2/NF-κB (p65)/miR-22/HDAC4/p21 and HER2/NF-κB (p65)/miR-22/Ac-p53/p21 signaling circuits may therefore confer this dual role on miR-22 through constitutive transactivation of p21.


Frontiers in Genetics | 2018

Growth of Triple Negative and Progesterone Positive Breast Cancer Causes Oxidative Stress and Down-Regulates Neuroprotective Transcription Factor NPAS4 and NPAS4-Regulated Genes in Hippocampal Tissues of TumorGraft Mice—an Aging Connection

Anna Kovalchuk; Yaroslav Ilnytskyy; Rocio Rodriguez-Juarez; Amanda Katz; David Sidransky; Bryan Kolb; Olga Kovalchuk

While the refinement of existing and the development of new chemotherapeutic regimens has significantly improved cancer treatment outcomes and patient survival, chemotherapy still causes many persistent side effects. Central nervous system (CNS) toxicity is of particular concern, as cancer patients experience significant deficits in memory, learning, cognition, and decision-making. These chemotherapy-induced cognitive changes are termed chemo brain, and manifest in more than half of cancer survivors. Moreover, recent studies have emerged suggesting that neurocognitive deficits manifest prior to cancer diagnosis and treatment, and thus may be associated with tumor presence, a phenomenon recently termed “tumor brain.” To dissect the molecular mechanisms of tumor brain, we used TumorGraftTM models, wherein part of a patients tumor is grafted into immune-deficient mice. Here, we analyzed molecular changes in the hippocampal tissues of mice carrying triple negative (TNBC) or progesterone receptor positive (PR+BC) xenografts. TNBC growth led to increased oxidative damage, as detected by elevated levels of 4-hydroxy-2-nonenal, a product of lipid peroxidation. Furthermore, the growth of TNBC and PR+BC tumors altered global gene expression in the murine hippocampus and affected multiple pathways implicated in PI3K-Akt and MAPK signaling, as well as other pathways crucial for the proper functioning of hippocampal neurons. TNBC and PR+BC tumor growth also led to a significant decrease in the levels of neuronal transcription factor NPAS4, a regulator that governs the expression of brain-derived neurotrophic factor (BDNF), and several other key brain neurotrophic factors and pro-survival molecules. The decreased expression of ERK1/2, NPAS4, and BDNF are also seen in neurodegenerative conditions and aging, and may constitute an important tumor brain mechanism.

Collaboration


Dive into the Rocio Rodriguez-Juarez's collaboration.

Top Co-Authors

Avatar

Olga Kovalchuk

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor P. Pogribny

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Kolb

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar

Volodymyr Tryndyak

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Golubov

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar

Dongping Li

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge