Rocío Sánchez-de-Armas
University of Seville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rocío Sánchez-de-Armas.
Journal of Chemical Theory and Computation | 2010
Rocío Sánchez-de-Armas; Jaime Oviedo López; Javier Fdez. Sanz; Pablo Ordejón; Miguel Pruneda
The structural and electronic properties of the alizarin dye supported on TiO2 nanoclusters have been examined by means of time-dependent density-functional (TD-DFT) calculations performed in the time-domain framework. The calculated electronic absorption spectrum of free alizarin shows a first band centered at 2.67 eV that upon adsorption features a red shift by 0.31 eV, in agreement with both experimental and previous theoretical work. This red shift arises from a relative stabilization of the dye LUMO when adsorbed. To analyze the dependence of the electronic properties of the dye-support couple on the size of metal-oxide nanoparticles, different models of (TiO2)n nanoclusters have been used (with n = 1, 2, 3, 6, 9, 15, and 38). As a conclusion, the minimal model is good enough to theoretically reproduce the main feature in the spectrum (i.e., the energy shift of the main band upon binding to TiO2). However, it fails in creating intermediate states which could play a significant role under real experimental conditions (dynamics of the electronic transfer). Indeed, as the size of the nanocluster grows, the dye LUMO moves from the edge to well inside the conduction band (Ti 3d band). On the other hand, to assess the consistency of the time-domain approach in the case of such systems, conventional (frequency-domain) TD-DFT calculations have been carried out. It is found that, as far as the functional and basis set are equivalent, both approaches lead to similar results. While for small systems the standard TD-DFT is better suited, for medium to large sized systems, the real-time TD-DFT becomes competitive and more efficient.
Journal of Chemical Physics | 2012
Rocío Sánchez-de-Armas; J. Oviedo; Javier Fdez. Sanz
In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH(2), and -OCH(3)) and two different substituents with steric effect: -CH(2)-CH(2)-CH(2)- and -CH(2)-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH(2) group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH(2)-CH(2)-CH(2)- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH(2)-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.
Chemistry: A European Journal | 2013
Rocío Sánchez-de-Armas; Liqin Xue; Mårten S. G. Ahlquist
Dehydrogenation of HCO2H: The reaction mechanism for the dehydrogenation of formic acid catalyzed by a highly active and selective iron complex has been studied by DFT. The most favorable pathway shows the hydride in Fe-H complexes acting as a spectator ligand throughout the catalytic cycle. This result opens up the Fe complex for modification in order to achieve more efficient and selective catalysts.
Journal of Physical Chemistry B | 2018
Katharina Witte; Ioanna Mantouvalou; Rocío Sánchez-de-Armas; Heiko Lokstein; Janina Lebendig-Kuhla; Adrian Jonas; Friedrich Roth; Birgit Kanngießer; Holger Stiel
Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.
Journal of Physical Chemistry A | 2018
Rocío Sánchez-de-Armas; Carmen J. Calzado
The interaction between itinerant π and localized d electrons in metal-phthalocyanines, namely, Jπd interaction, is considered as responsible for the giant negative magnetoresistance observed in several phthalocyanine-based conductors, among many other important physical properties. Despite the fundamental and technological importance of this on-site intramolecular interaction, its giant ferromagnetic nature has been only recently demonstrated by the experiments conducted by Murakawa et al. in the neutral radical [Fe(Pc)(CN)2]·2CHCl3 ( Phys. Rev. B 2015 , 92 , 054429 ). In this article, we present the theoretical evaluation of this interaction combining wave function-based electronic calculations on isolated Fe(Pc)(CN)2 molecules and density functional theory-based periodic calculations on the crystal. Our calculations confirm the ferromagnetic nature of the π-d interaction, with a coupling constant as large as Jπd/kB = 570 K, in excellent agreement with the experiments, and the presence of intermolecular antiferromagnetic interactions driven by the π-π overlap of neighboring phthalocyaninato molecules. The analysis of the wave function of the ground state of the Fe(Pc)(CN)2 molecule provides the clues of the origin of this giant ferromagnetic π-d interaction.
Chemistry: A European Journal | 2018
Rocío Sánchez-de-Armas; Norge Cruz-Hernández; Carmen J. Calzado
The electronic structure and magnetic interactions of three members of the breathing crystal Cu(hfac)2 LR family (hfac=hexafluoroacetylacetonato, LR =pyrazole-substituted nitronyl nitroxides with R=Me, Et, Pr, iPr, Bu ), mainly Cu(hfac)2 LPr (1), Cu(hfac)2 LBu ⋅0.5 C8 H18 (2) and Cu(hfac)2 LBu ⋅0.5 C8 H10 (3), have been analyzed by means of periodic plane-wave based DFT+U calculations. These CuII -nitroxide based molecular magnets display thermally and optically induced switchable behavior and light-induced excited spin state trapping phenomena. The calculations confirm the presence of temperature-dependent exchange interaction within the spin triads formed by the nitroxide-copper(II)-nitroxide units, in line with the changes observed in the effective magnetic moment. Moreover, they quantify the interchain interaction mediated by the terminal nitroxide group of two spin triads in neighboring polymer chains. This interaction competes with the exchange interaction within the spin triads at high temperature, and introduces 1D exchange channels that do not coincide with the polymeric chains. The density of states reveal that the low-lying conduction states potentially involved in the UV/Vis transitions are located on the nitroxide radicals, the hfac groups and the Cu atoms. Then, the density of states is almost independent of the solvent and the R group. This suggests the possibility of light-induced spin switching for other members of this family. The 500 nm band of the low-temperature phase can be ascribed to a ligand-to-metal charge transfer transition between the nitroxide and Cu bands.
ACS Applied Materials & Interfaces | 2018
Azahara Luna-Triguero; José Manuel Vicent-Luna; Ali Poursaeidesfahani; Thijs J. H. Vlugt; Rocío Sánchez-de-Armas; P. Gómez-Álvarez; Sofia Calero
The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.
Physical Chemistry Chemical Physics | 2012
Rocío Sánchez-de-Armas; Miguel Ángel San Miguel; J. Oviedo; Javier Fdez. Sanz
Journal of Physical Chemistry C | 2011
Rocío Sánchez-de-Armas; J. Oviedo; Miguel Ángel San Miguel; Javier Fdez. Sanz
Journal of Physical Chemistry C | 2008
J. Oviedo; Rocío Sánchez-de-Armas; Miguel Ángel San Miguel; Javier Fdez. Sanz