Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rod Barrett is active.

Publication


Featured researches published by Rod Barrett.


Human Movement Science | 2001

Swing phase mechanics of healthy young and elderly men

Peter Mills; Rod Barrett

This study examined the effect of ageing on the swing phase mechanics of young and elderly gait. Sagittal plane marker trajectories and force plate data were collected while 10 young (24.9+/-0.9 years) and eight elderly (68.9+/-0.4 years) subjects walked at their preferred walking speeds. Comparison between young and elderly gait was made for a range of spatial-temporal, kinematic and kinetic variables with emphasis given to identifying possible differences at toe-off, minimum metatarsal-phalangeal joint clearance and heel contact. In order to control for the confounding effect of gait velocity on the dependent variables, a multivariate analysis of covariance was used to identify differences between the young and elderly subjects due to age. In contrast to studies that have reported lower preferred walking speeds in the elderly compared to the young [J.O. Judge, R.B. Davis III, S. Ounpuu, Step length reductions in advanced age: the role of ankle and hip kinetics, Journal of Gerontology: Medical Sciences 51 (1996) M303-312; D.C. Kerrigan, M.K. Todd, U. Della Croce, L.A. Lipsitz, J.J. Collins, Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments, Archives of Physical and Medical Rehabilitation 79 (1998) 317-322], no differences in walking speed nor in the spatial-temporal variables that determine walking speed were detected. The elderly were however, found to have a greater hip extension moment at the time of minimum metatarsal-phalangeal joint clearance, and a significantly higher anterior-posterior velocity heel contact velocity that was linked to a significantly higher shank and foot angular velocity at heel contact. Since many gait variables are highly correlated with walking speed [C. Kirtley, M.W. Whittle, R.J. Jefferson, Influence of walking speed on gait parameters, Journal of Biomechanical Engineering 7 (1985) 282-288; D.A. Winter, Biomechanical motor patterns in normal walking, Journal of Motor Behaviour 15 (1983) 302-330], differences between young and elderly gait found in the present study may therefore be attributed to ageing, rather than a secondary effect of differences in gait velocity.


Developmental Medicine & Child Neurology | 2010

Gross muscle morphology and structure in spastic cerebral palsy: a systematic review.

Rod Barrett; Glen A. Lichtwark

Aim  This systematic review and critical evaluation of the literature was conducted to determine how gross muscle morphology and structure are altered in individuals with spastic cerebral palsy (CP).


Gait & Posture | 2010

A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking

Rod Barrett; Peter Mills; Rezaul Begg

Minimum foot clearance (MFC) is the minimum vertical distance between the lowest point of the foot of the swing leg and the walking surface during the swing phase of the gait cycle. MFC is a gait variable that is linked to the mechanism of a trip because reduced MFC for a given step during walking increases the susceptibility to tripping on an unseen obstacle or due to undetected changes in surface height. Given that tripping is a common cause of falls in older persons, this review was undertaken to determine whether ageing and/or history of falls in older adults influences MFC characteristics during level walking. Studies that assessed MFC characteristics including measures of central tendency (mean and/or median), variability (linear and non-linear measures) and shape (skewness, kurtosis) of the MFC distribution were included in the review. The final yield from a search of seven electronic research databases was 12 unique articles that met all the inclusion criteria. Ageing does not appear to alter measures of central tendency or shape of the MFC distribution. However greater MFC variability was observed in older compared to younger adults and older fallers compared to older non-fallers in the majority of studies. Greater MFC variability may contribute to increased risk of trips and associated falls in older compared to young adults and older fallers compared to older non-fallers.


Journal of Applied Physiology | 2011

Automatic tracking of medial gastrocnemius fascicle length during human locomotion

Neil J. Cronin; Christopher P. Carty; Rod Barrett; Glen A. Lichtwark

During human locomotion lower extremity muscle-tendon units undergo cyclic length changes that were previously assumed to be representative of muscle fascicle length changes. Measurements in cats and humans have since revealed that muscle fascicle length changes can be uncoupled from those of the muscle-tendon unit. Ultrasonography is frequently used to estimate fascicle length changes during human locomotion. Fascicle length analysis requires time consuming manual methods that are prone to human error and experimenter bias. To bypass these limitations, we have developed an automatic fascicle tracking method based on the Lucas-Kanade optical flow algorithm with an affine optic flow extension. The aims of this study were to compare gastrocnemius fascicle length changes during locomotion using the automated and manual approaches and to determine the repeatability of the automated approach. Ultrasound was used to examine gastrocnemius fascicle lengths in eight participants walking at 4, 5, 6, and 7 km/h and jogging at 7 km/h on a treadmill. Ground reaction forces and three dimensional kinematics were recorded simultaneously. The level of agreement between methods and the repeatability of the automated method were quantified using the coefficient of multiple correlation (CMC). Regardless of speed, the level of agreement between methods was high, with overall CMC values of 0.90 ± 0.09 (95% CI: 0.86-0.95). Repeatability of the algorithm was also high, with an overall CMC of 0.88 ± 0.08 (95% CI: 0.79-0.96). The automated fascicle tracking method presented here is a robust, reliable, and time-efficient alternative to the manual analysis of muscle fascicle length during gait.


Developmental Medicine & Child Neurology | 2011

Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy.

Lee Barber; Tandy Hastings-Ison; Richard Baker; Rod Barrett; Glen A. Lichtwark

Aim  The aim of this article was to compare medial gastrocnemius muscle volume, physiological cross‐sectional area (PCSA), muscle length, fascicle length, and pennation angle in children aged 2 to 5 years with spastic cerebral palsy (CP) and in typically developing children.


Journal of Biomechanics | 2009

Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle

Lee Barber; Rod Barrett; Glen A. Lichtwark

Muscle volume and length are important parameters for examining the force-generating capabilities of muscle and their evaluation is necessary in studies that investigate muscle morphology and mechanical changes due to age, function, pathology, surgery and training. In this study, we assessed the validity and reliability of in vivo muscle volume and muscle belly length measurement using a multiple sweeps freehand 3D ultrasound (3DUS). The medial gastrocnemius of 10 subjects was scanned at three ankle joint angles (15 degrees , 0 degrees and -15 degrees dorsiflexion) three times using the freehand 3DUS and once on the following day using magnetic resonance imaging (MRI). All freehand 3DUS and MRI images were segmented, volumes rendered and volumes and muscle belly lengths measured. The freehand 3DUS overestimated muscle volume by 1.9+/-9.1 mL, 1.1+/-3.8% difference and underestimated muscle belly length by 3.0+/-5.4mm, 1.3+/-2.2% difference. The intra-class correlation coefficients (ICC) for repeated freehand 3DUS system measures of muscle volume and muscle belly length were greater than 0.99 and 0.98, respectively. The ICCs for the segmentation process reliability for the freehand 3DUS system and MRI for muscle volume were both greater than 0.99 and muscle belly length were 0.97 and 0.99, respectively. Freehand 3DUS is a valid and reliable method for the measurement of human muscle volume and muscle belly length in vivo. It could be used as an alternative to MRI for measuring in vivo muscle morphology and thus allowing the determination of PCSA and estimation of the force-generating capacity of individual muscles within the setting of a biomechanics laboratory.


Journal of Biomechanics | 2011

Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy

Lee Barber; Rod Barrett; Glen A. Lichtwark

Individuals with spastic cerebral palsy (SCP) exhibit restricted joint range of motion and increased joint stiffness due to structural alterations of their muscles. Little is known about which muscle-tendon structures are responsible for these alterations. The aim of this study was to compare the passive mechanics of the ankle joint and medial gastrocnemius (MG) muscle in young adults with SCP and typically developed (TD) individuals. Nine ambulant SCP (17±2 years) and ten TD individuals (18±2 years) participated in the study. Physiological cross sectional area was estimated using freehand 3D ultrasound and found to be 37% lower in the SCP group. An isokinetic dynamometer rotated the ankle through its range while joint torque and ultrasound images of the MG muscle fascicles were simultaneously measured. Mean ankle stiffness was found to be 51% higher and mean MG fascicle strain 47% lower in the SCP group. Increased resistance to passive ankle dorsiflexion in SCP appears to be related to the inability of MG muscle fascicles to elongate with increased force.


Journal of Motor Behavior | 2008

Gender Differences in the Variability of Lower Extremity Kinematics During Treadmill Locomotion

Rod Barrett; Maarten Vonk Noordegraaf; Steven Morrison

The authors examined whether there were gender differences in the variability of basic gait parameters (stride length, stride time) and 3-dimensional (3D) rotations of the hip, knee, and ankle joints during treadmill locomotion of 18 men and 15 women at 4 different gait speeds (walking at 5 km/hr, running at 8, 10, and 12 km/hr). The authors used 2-way analyses of variance to assess the data. No gender differences in the mean values or variability of basic gait parameters were detected. However, the women exhibited lower variability than did the men for 6 individual joint rotations: (a) transverse plane rotations of the ankle joint at 8, 10, and 12 km/hr, (b) transverse plane rotations of the hip and knee joints at 12 km/hr, and (c) sagittal plane rotations of the ankle joint at 12 km/hr. When collapsed across all 3D lower extremity rotations, the data showed that the women had lower variability than did the men at 12 km/hr. Reduced variability may result in more localized mechanical stress on anatomical structures and could therefore be a risk factor for injury in women at high gait speeds. The results also suggested that gender differences in variability may not be consistent across different levels of the motor system.


Human Movement Science | 2008

Age-related differences in postural reaction time and coordination during voluntary sway movements

Murray G. Tucker; Justin J. Kavanagh; Rod Barrett; Steven Morrison

The elderly are known to exhibit declines in postural control during standing and walking, however little is known about how the elderly react under time-critical and challenging postural situations. The purpose of this study was to examine age-related differences in reaction time (RT) and the pattern of temporal coordination between center of pressure (COP), trunk and head motion during voluntary postural sway movements. Healthy young (n=10; mean=24 years; SD=5 years) and elderly men (n=8; mean=75 years; SD=2 years) stood on a force plate with tri-axial accelerometers attached to the head and lower trunk. Participants were required to generate sway in the anterior-posterior (AP) or medial-lateral (ML) direction in response to an auditory cue during two different testing conditions called Static reaction and Dynamic reaction. Static reactions involved the initiation of voluntary sway in either the AP or ML direction from quiet stance. Dynamic reactions involved an orthogonal switch of voluntary sway between the AP and ML directions. Compared to the young, elderly individuals exhibited slower RT during both Static and Dynamic reaction, and smaller differences in RT and phasing between COP, trunk, and head motion. The results of this study suggest that the elderly adopted more rigid coordination strategies compared to the young when executing a rapid change in direction of whole body motion. The rigid movement strategy of the elderly was presumably generated in an effort to compensate for increased challenge to the maintenance of stability.


Computer Methods in Biomechanics and Biomedical Engineering | 2013

Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound

Jarred Gavan Gillett; Rod Barrett; Glen A. Lichtwark

Manual tracking of muscle fascicle length changes from ultrasound images is a subjective and time-consuming process. The purpose of this study was to assess the repeatability and accuracy of an automated algorithm for tracking fascicle length changes in the medial gastrocnemius (MG) muscle during passive length changes and active contractions (isometric, concentric and eccentric) performed on a dynamometer. The freely available, automated tracking algorithm was based on the Lucas–Kanade optical flow algorithm with an affine optic flow extension, which accounts for image translation, dilation, rotation and shear between consecutive frames of an image sequence. Automated tracking was performed by three experienced assessors, and within- and between-examiner repeatability was computed using the coefficient of multiple determination (CMD). Fascicle tracking data were also compared with manual digitisation of the same image sequences, and the level of agreement between the two methods was calculated using the coefficient of multiple correlation (CMC). The CMDs across all test conditions ranged from 0.50 to 0.93 and were all above 0.98 when recomputed after the systematic error due to the estimate of the initial fascicle length on the first ultrasound frame was removed from the individual fascicle length waveforms. The automated and manual tracking approaches produced similar fascicle length waveforms, with an overall CMC of 0.88, which improved to 0.94 when the initial length offset was removed. Overall results indicate that the automated fascicle tracking algorithm was a repeatable, accurate and time-efficient method for estimating fascicle length changes of the MG muscle in controlled passive and active conditions.

Collaboration


Dive into the Rod Barrett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil J. Cronin

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge