Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rod Cupples is active.

Publication


Featured researches published by Rod Cupples.


Cell | 1996

GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF

Shuqian Jing; Duanzhi Wen; Yanbin Yu; Paige Holst; Yi Luo; Mei Fang; Rami Tamir; Laarni Antonio; Zheng Hu; Rod Cupples; Jean-Claude Louis; Sylvia Hu; Bruce W. Altrock; Gary M. Fox

We report the expression cloning and characterization of GDNFR-alpha, a novel glycosylphosphatidylinositol-linked cell surface receptor for glial cell line-derived neurotrophic factor (GDNF). GDNFR-alpha binds GDNF specifically and mediates activation of the Ret protein-tyrosine kinase (PTK). Treatment of Neuro-2a cells expressing GDNFR-alpha with GDNF rapidly stimulates Ret autophosphorylation. Ret is also activated by treatment with a combination of GDNF and soluble GDNFR-alpha in cells lacking GDNFR-alpha, and this effect is blocked by a soluble Ret-Fc fusion protein. Ret activation by GDNF was also observed in cultured embryonic rat spinal cord motor neurons, a cell type that responds to GDNF in vivo. A model for the stepwise formation of a GDNF signal-transducing complex including GDNF, GDNFR-alpha, and the Ret PTK is proposed.


Cell | 1990

Primary structure and functional expression of rat and human stem cell factor DNAs.

Francis H. Martin; Sidney V. Suggs; Keith E. Langley; Hsieng S. Lu; Jerry Ting; Kenneth H. Okino; C.Fred Morris; Ian K. McNiece; Frederick W. Jacobsen; Elizabeth A. Mendlaz; Neal C. Birkett; Kent A. Smith; Merrie Jo Johnson; Vann P. Parker; Josephine C. Flores; Avantika C. Patel; Eric F. Fisher; Holly O. Erjavec; Charles J. Herrera; Raj Sachdev; Joseph Pope; Ian Leslie; Duanzhi Wen; Chi Hwei Lin; Rod Cupples; Krisztina M. Zsebo

Partial cDNA and genomic clones of rat stem cell factor (SCF) have been isolated. Using probes based on the rat sequence, partial and full-length cDNA and genomic clones of human SCF have been isolated. Based on the primary structure of the 164 amino acid protein purified from BRL-3A cells, truncated forms of the rat and human proteins have been expressed in E. coli and mammalian cells and have been shown to possess biological activity. SCF is able to augment the proliferation of both myeloid and lymphoid hematopoietic progenitors in bone marrow cultures. SCF exhibits potent synergistic activities in conjunction with colony-stimulating factors, resulting in increased colony numbers and colony size.


Cell | 1992

Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit

Duanzhi Wen; Elior Peles; Rod Cupples; Sidney V. Suggs; Sarah S. Bacus; Yi Luo; Geraldine Trail; Sylvia Hu; Scott M. Silbiger; Rachel Ben Levy; Raymond A. Koski; Hsieng S. Lu; Yosef Yarden

We recently reported that a 44 kd glycoprotein secreted by transformed fibroblasts stimulates tyrosine phosphorylation of the product of the neu proto-oncogene and induces differentiation of mammary tumor cells to milk-producing, growth-arrested cells. A partial amino acid sequence of the protein, termed Neu differentiation factor (NDF), enabled cloning of the corresponding complementary DNA. The deduced structure of the precursor of NDF indicated that it is a transmembrane protein whose extracellular portion contains an EGF-like domain that probably functions as a receptor recognition site. In addition, the ectodomain contains one immunoglobulin homology unit. Despite the lack of a recognizable hydrophobic signal peptide at the N-terminus, a recombinant NDF, like the natural molecule, is released into the medium of transfected COS-7 cells in a biologically active form. Northern blot analysis indicated the existence of several NDF transcripts, the major ones being 1.8, 2.6, and 6.7 kb in size. Transformation by the ras oncogene dramatically elevated the expression of NDF in fibroblasts.


Molecular and Cellular Biology | 1994

Structural and functional aspects of the multiplicity of Neu differentiation factors.

Duanzhi Wen; Sidney V. Suggs; Devarajan Karunagaran; Naili Liu; Rod Cupples; Y Luo; A M Janssen; N Ben-Baruch; D B Trollinger; V L Jacobsen

We used molecular cloning and functional analyses to extend the family of Neu differentiation factors (NDFs) and to explore the biochemical activity of different NDF isoforms. Exhaustive cloning revealed the existence of six distinct fibroblastic pro-NDFs, whose basic transmembrane structure includes an immunoglobulin-like motif and an epidermal growth factor (EGF)-like domain. Structural variation is confined to three domains: the C-terminal portion of the EGF-like domain (isoforms alpha and beta), the adjacent juxtamembrane stretch (isoforms 1 to 4), and the variable-length cytoplasmic domain (isoforms a, b, and c). Only certain combinations of the variable domains exist, and they display partial tissue specificity in their expression: pro-NDF-alpha 2 is the predominant form in mesenchymal cells, whereas pro-NDF-beta 1 is the major neuronal isoform. Only the transmembrane isoforms were glycosylated and secreted as biologically active 44-kDa glycoproteins, implying that the transmembrane domain functions as an internal signal peptide. Extensive glycosylation precedes proteolytic cleavage of pro-NDF but has no effect on receptor binding. By contrast, the EGF-like domain fully retains receptor binding activity when expressed separately, but its beta-type C terminus displays higher affinity than alpha-type NDFs. Likewise, structural heterogeneity of the cytoplasmic tails may determine isoform-specific rate of pro-NDF processing. Taken together, these results suggest that different NDF isoforms are generated by alternative splicing and perform distinct tissue-specific functions.


Molecular and Cellular Biology | 1998

Cloning and characterization of a specific receptor for mouse oncostatin M.

Richard Lindberg; Todd Juan; Andrew A. Welcher; Yu Sun; Rod Cupples; Brenda Guthrie; Frederick A. Fletcher

ABSTRACT Oncostatin M (OSM) is a member of a family of cytokines that includes ciliary neurotrophic factor, interleukin-6, interleukin-11, cardiotrophin-1, and leukemia inhibitory factor (LIF). The receptors for these cytokines consist of a common signaling subunit, gp130, to which other subunits are added to modify ligand specificity. We report here the isolation and characterization of a cDNA encoding a subunit of the mouse OSM receptor. In NIH 3T3 cells (which endogenously express gp130, LIF receptor β [LIFRβ], and the protein product, c12, of the cDNA described here), mouse LIF, human LIF, and human OSM signaled through receptors containing the LIFRβ and gp130 but not through the mouse OSM receptor. Mouse OSM, however, signaled only through a c12-gp130 complex; it did not use the LIF receptor. Binding studies demonstrated that mouse OSM associated directly with either the c12 protein or gp130. These data highlight the species-specific differences in receptor utilization and signal transduction between mouse and human OSM. In mouse cells, only mouse OSM is capable of activating the mouse OSM receptor; human OSM instead activates the LIF receptor. Therefore, these data suggest that all previous studies with human OSM in mouse systems did not elucidate the biology of OSM but, rather, reflected the biological actions of LIF.


Gene | 1994

Cloning of cDNAs encoding human TIMP-3, a novel member of the tissue inhibitor of metalloproteinase family.

Scott M. Silbiger; Victoria L. Jacobsen; Rod Cupples; Raymond A. Koski

Proteins of the tissue inhibitor of metalloproteinase (TIMP) family bind and inactivate matrix metalloproteinases such as collagenases and gelatinases. We report the cloning and sequencing of cDNAs encoding a novel human TIMP, which we designated TIMP-3, the third member of the human TIMP family. Degenerate PCR primers derived from highly conserved regions of TIMP family cDNAs amplified a 402-bp product from human fetal kidney cDNA. This product and a related 333-bp PCR product were used as probes to screen two cDNA libraries. Three TIMP-3 cDNA clones were isolated, including a 1240-bp fetal kidney clone that contained a complete TIMP-3 precursor coding region of 211 amino acids (aa). The deduced precursor protein includes twelve Cys and 27 other aa that are invariant in the TIMP family. The predicted aa sequence is 89, 39 and 46% identical to those of ChIMP-3, human TIMP-1 and human TIMP-2, respectively. Northern blot analyses detected three TIMP-3 mRNA bands of 2.2, 2.5 and 4.4 kb in several human cell lines.


Nature | 2013

Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

David J. Lloyd; David J. St. Jean; Robert J.M. Kurzeja; Robert C. Wahl; Klaus Michelsen; Rod Cupples; Michelle Chen; John Wu; Glenn Sivits; Joan Helmering; Renee Komorowski; Kate S. Ashton; Lewis D. Pennington; Christopher Fotsch; Mukta Vazir; Kui Chen; Samer Chmait; Jiandong Zhang; Longbin Liu; Mark H. Norman; Kristin L. Andrews; Michael D. Bartberger; Gwyneth Van; Elizabeth J. Galbreath; Steven Vonderfecht; Minghan Wang; Steven R. Jordan; Murielle M. Véniant; Clarence Hale

Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK–GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.


Journal of Medicinal Chemistry | 2010

Discovery of a Potent, Orally Active 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor for Clinical Study: Identification of (S)-2-((1S,2S,4R)-Bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221)

Murielle M. Véniant; Clarence Hale; Randall W. Hungate; Kyung Gahm; Maurice Emery; Janan Jona; Smriti Joseph; Jeffrey Adams; Andrew Hague; George A. Moniz; Jiandong Zhang; Michael D. Bartberger; Vivian Li; Rashid Syed; Steven R. Jordan; Renee Komorowski; Michelle Chen; Rod Cupples; Ki Won Kim; David J. St. Jean; Lars Johansson; Martin Henriksson; Meredith Williams; Jerk Vallgarda; Christopher Fotsch; Minghan Wang

Thiazolones with an exo-norbornylamine at the 2-position and an isopropyl group on the 5-position are potent 11beta-HSD1 inhibitors. However, the C-5 center was prone to epimerization in vitro and in vivo, forming a less potent diastereomer. A methyl group was added to the C-5 position to eliminate epimerization, leading to the discovery of (S)-2-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221). This compound decreased fed blood glucose and insulin levels and reduced body weight in diet-induced obesity mice.


Chemical Biology & Drug Design | 2007

Structural characterization and pharmacodynamic effects of an orally active 11beta-hydroxysteroid dehydrogenase type 1 inhibitor.

Clarence Hale; Murielle M. Véniant; Zhulun Wang; Michelle Chen; Jocelyn McCormick; Rod Cupples; Dean Hickman; Xiaoshan Min; Athena Sudom; Haoda Xu; Guy Matsumoto; Christopher Fotsch; David J. St. Jean; Minghan Wang

11β‐Hydroxysteroid dehydrogenase type 1 regulates glucocorticoid action and inhibition of this enzyme is a viable therapeutic strategy for the treatment of type 2 diabetes and the metabolic syndrome. Here, we report a potent and selective 11β‐hydroxysteroid dehydrogenase type 1 inhibitor with a binding mode elucidated from the co‐crystal structure with the human 11β‐hydroxysteroid dehydrogenase type 1. The inhibitor is bound to the steroid‐binding pocket making contacts with the catalytic center and the solvent channel. The inhibitor binding is facilitated by two direct hydrogen bond interactions involving Tyrosine183 of the catalytic motif Tyr‐X‐X‐X‐Lys and Alanine172. In addition, the inhibitor makes many hydrophobic interactions with both the enzyme and the co‐factor nicotinamide adenine dinucleotide phosphate (reduced). In lean C57BL/6 mice, the compound inhibited both the in vivo and ex vivo 11β‐hydroxysteroid dehydrogenase type 1 activities in a dose‐dependent manner. The inhibitory effects correlate with the plasma compound concentrations, suggesting that there is a clear pharmacokinetic and pharmacodynamic relationship. Moreover, at the same doses used in the pharmacokinetic/pharmacodynamic studies, the inhibitor did not cause the activation of the hypothalamic–pituitary–adrenal axis in an acute mouse model, suggesting that this compound exhibits biological effects with minimal risk of activating the hypothalamic–pituitary–adrenal axis.


Journal of Medicinal Chemistry | 2014

Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 3. Structure–Activity Relationships within the Aryl Carbinol Region of the N-Arylsulfonamido-N′-arylpiperazine Series

Nobuko Nishimura; Mark H. Norman; Longbin Liu; Kevin C. Yang; Kate S. Ashton; Michael D. Bartberger; Samer Chmait; Jie Chen; Rod Cupples; Christopher Fotsch; Joan Helmering; Steven R. Jordan; Roxanne Kunz; Lewis D. Pennington; Steve F. Poon; Aaron C. Siegmund; Glenn Sivits; David J. Lloyd; Clarence Hale; David J. St. Jean

We have recently reported a novel approach to increase cytosolic glucokinase (GK) levels through the binding of a small molecule to its endogenous inhibitor, glucokinase regulatory protein (GKRP). These initial investigations culminated in the identification of 2-(4-((2S)-4-((6-amino-3-pyridinyl)sulfonyl)-2-(1-propyn-1-yl)-1-piperazinyl)phenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (1, AMG-3969), a compound that effectively enhanced GK translocation and reduced blood glucose levels in diabetic animals. Herein we report the results of our expanded SAR investigations that focused on modifications to the aryl carbinol group of this series. Guided by the X-ray cocrystal structure of compound 1 bound to hGKRP, we identified several potent GK-GKRP disruptors bearing a diverse set of functionalities in the aryl carbinol region. Among them, sulfoximine and pyridinyl derivatives 24 and 29 possessed excellent potency as well as favorable PK properties. When dosed orally in db/db mice, both compounds significantly lowered fed blood glucose levels (up to 58%).

Collaboration


Dive into the Rod Cupples's collaboration.

Researchain Logo
Decentralizing Knowledge