Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roderic Guigó is active.

Publication


Featured researches published by Roderic Guigó.


Nature | 2012

Landscape of transcription in human cells

Sarah Djebali; Carrie A. Davis; Angelika Merkel; Alexander Dobin; Timo Lassmann; Ali Mortazavi; Andrea Tanzer; Julien Lagarde; Wei Lin; Felix Schlesinger; Chenghai Xue; Georgi K. Marinov; Jainab Khatun; Brian A. Williams; Chris Zaleski; Joel Rozowsky; Maik Röder; Felix Kokocinski; Rehab F. Abdelhamid; Tyler Alioto; Igor Antoshechkin; Michael T. Baer; Nadav S. Bar; Philippe Batut; Kimberly Bell; Ian Bell; Sudipto Chakrabortty; Xian Chen; Jacqueline Chrast; Joao Curado

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Genome Research | 2012

The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression

Thomas Derrien; Rory Johnson; Giovanni Bussotti; Andrea Tanzer; Sarah Djebali; Hagen Tilgner; Gregory Guernec; David Martin; Angelika Merkel; David G. Knowles; Julien Lagarde; Lavanya Veeravalli; Xiaoan Ruan; Yijun Ruan; Timo Lassmann; Piero Carninci; James B. Brown; Leonard Lipovich; José Manuel Rodríguez González; Mark G. Thomas; Carrie A. Davis; Ramin Shiekhattar; Thomas R. Gingeras; Tim Hubbard; Cedric Notredame; Jennifer Harrow; Roderic Guigó

The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences-particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.


Genome Research | 2012

GENCODE: The reference human genome annotation for The ENCODE Project

Jennifer Harrow; Adam Frankish; José Manuel Rodríguez González; Electra Tapanari; Mark Diekhans; Felix Kokocinski; Bronwen Aken; Daniel Barrell; Amonida Zadissa; Stephen M. J. Searle; I. Barnes; Alexandra Bignell; Veronika Boychenko; Toby Hunt; Mike Kay; Gaurab Mukherjee; Jeena Rajan; Gloria Despacio-Reyes; Gary Saunders; Charles A. Steward; Rachel A. Harte; Mike Lin; Cédric Howald; Andrea Tanzer; Thomas Derrien; Jacqueline Chrast; Nathalie Walters; Suganthi Balasubramanian; Baikang Pei; Michael L. Tress

The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.


Nature | 2004

Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype

Olivier Jaillon; Jean-Marc Aury; Frédéric Brunet; Jean-Louis Petit; Nicole Stange-Thomann; Evan Mauceli; Laurence Bouneau; Cécile Fischer; Catherine Ozouf-Costaz; Alain Bernot; Sophie Nicaud; David B. Jaffe; Sheila Fisher; Georges Lutfalla; Carole Dossat; Béatrice Segurens; Corinne Dasilva; Marcel Salanoubat; Michael Levy; Nathalie Boudet; Sergi Castellano; Véronique Anthouard; Claire Jubin; Vanina Castelli; Michael Katinka; Benoit Vacherie; Christian Biémont; Zineb Skalli; Laurence Cattolico; Julie Poulain

Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.


Cell | 2010

Long noncoding RNAs with enhancer-like function in human cells

Ulf Andersson Ørom; Thomas Derrien; Malte Beringer; Kiranmai Gumireddy; Alessandro Gardini; Giovanni Bussotti; Fan Lai; Matthias Zytnicki; Cedric Notredame; Qihong Huang; Roderic Guigó; Ramin Shiekhattar

While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to decreased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in activation of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.


Nature | 2011

Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

Xose S. Puente; Magda Pinyol; Víctor Quesada; Laura Conde; Gonzalo R. Ordóñez; Neus Villamor; Geòrgia Escaramís; Pedro Jares; Sílvia Beà; Marcos González-Díaz; Laia Bassaganyas; Tycho Baumann; Manel Juan; Mónica López-Guerra; Dolors Colomer; Jose M. C. Tubio; Cristina López; Alba Navarro; Cristian Tornador; Marta Aymerich; María Rozman; Jesús Hernández; Diana A. Puente; José M. P. Freije; Gloria Velasco; Ana Gutiérrez-Fernández; Dolors Costa; Anna Carrió; Sara Guijarro; Anna Enjuanes

Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.


Nature | 2013

Transcriptome and genome sequencing uncovers functional variation in humans.

Tuuli Lappalainen; Michael Sammeth; Marc R. Friedländer; Peter A. C. 't Hoen; Jean Monlong; Manuel A. Rivas; Mar Gonzàlez-Porta; Natalja Kurbatova; Thasso Griebel; Pedro G. Ferreira; Matthias Barann; Thomas Wieland; Liliana Greger; M. van Iterson; Jonas Carlsson Almlöf; Paolo Ribeca; Irina Pulyakhina; Daniela Esser; Thomas Giger; Andrew Tikhonov; Marc Sultan; G. Bertier; Daniel G. MacArthur; Monkol Lek; Esther Lizano; Henk P. J. Buermans; Ismael Padioleau; Thomas Schwarzmayr; Olof Karlberg; Halit Ongen

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project—the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.


Nature | 2006

Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia

Jean-Marc Aury; Olivier Jaillon; Laurent Duret; Benjamin Noel; Claire Jubin; Betina M. Porcel; Béatrice Segurens; Vincent Daubin; Véronique Anthouard; Nathalie Aiach; Olivier Arnaiz; Alain Billaut; Janine Beisson; Isabelle Blanc; Khaled Bouhouche; Francisco Câmara; Sandra Duharcourt; Roderic Guigó; Delphine Gogendeau; Michael Katinka; Anne-Marie Keller; Roland Kissmehl; Catherine Klotz; Anne Le Mouël; Gersende Lepère; Sophie Malinsky; Mariusz Nowacki; Jacek K. Nowak; Helmut Plattner; Julie Poulain

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Science | 2015

Human genomics. The human transcriptome across tissues and individuals.

Marta Melé; Pedro G. Ferreira; Ferran Reverter; David S. DeLuca; Jean Monlong; Michael Sammeth; Taylor R. Young; Jakob M. Goldmann; Dmitri D. Pervouchine; Timothy J. Sullivan; Rory Johnson; Ayellet V. Segrè; Sarah Djebali; Anastasia Niarchou; Fred A. Wright; Tuuli Lappalainen; Miquel Calvo; Gad Getz; Emmanouil T. Dermitzakis; Kristin Ardlie; Roderic Guigó

Expression, genetic variation, and tissues Human genomes show extensive genetic variation across individuals, but we have only just started documenting the effects of this variation on the regulation of gene expression. Furthermore, only a few tissues have been examined per genetic variant. In order to examine how genetic expression varies among tissues within individuals, the Genotype-Tissue Expression (GTEx) Consortium collected 1641 postmortem samples covering 54 body sites from 175 individuals. They identified quantitative genetic traits that affect gene expression and determined which of these exhibit tissue-specific expression patterns. Melé et al. measured how transcription varies among tissues, and Rivas et al. looked at how truncated protein variants affect expression across tissues. Science, this issue p. 648, p. 660, p. 666; see also p. 640 RNA expression documents patterns of human transcriptome variation across individuals and tissues. [Also see Perspective by Gibson] Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Defining functional DNA elements in the human genome

Manolis Kellis; Barbara J. Wold; Michael Snyder; Bradley E. Bernstein; Anshul Kundaje; Georgi K. Marinov; Lucas D. Ward; Ewan Birney; Gregory E. Crawford; Job Dekker; Ian Dunham; Laura Elnitski; Peggy J. Farnham; Elise A. Feingold; Mark Gerstein; Morgan C. Giddings; David M. Gilbert; Thomas R. Gingeras; Eric D. Green; Roderic Guigó; Tim Hubbard; Jim Kent; Jason D. Lieb; Richard M. Myers; Michael J. Pazin; Bing Ren; John A. Stamatoyannopoulos; Zhiping Weng; Kevin P. White; Ross C. Hardison

With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

Collaboration


Dive into the Roderic Guigó's collaboration.

Top Co-Authors

Avatar

Thomas R. Gingeras

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer Harrow

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Frankish

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Sammeth

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge