Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roderick J. Tan is active.

Publication


Featured researches published by Roderick J. Tan.


American Journal of Pathology | 2008

A Role for the Receptor for Advanced Glycation End Products in Idiopathic Pulmonary Fibrosis

Judson M. Englert; Lana E. Hanford; Naftali Kaminski; Jacob M. Tobolewski; Roderick J. Tan; Cheryl L. Fattman; Lasse Ramsgaard; Thomas J. Richards; Inna Loutaev; Peter P. Nawroth; Michael Kasper; Angelika Bierhaus; Tim D. Oury

Idiopathic pulmonary fibrosis (IPF) is a severely debilitating disease associated with a dismal prognosis. There are currently no effective therapies for IPF, thus the identification of novel therapeutic targets is greatly needed. The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation has been linked to various pathologies. In healthy adult animals, RAGE is expressed at the highest levels in the lung compared to other tissues. To investigate the hypothesis that RAGE is involved in IPF pathogenesis, we have examined its expression in two mouse models of pulmonary fibrosis and in human tissue from IPF patients. In each instance we observed a depletion of membrane RAGE and its soluble (decoy) isoform, sRAGE, in fibrotic lungs. In contrast to other diseases in which RAGE signaling promotes pathology, immunohistochemical and hydroxyproline quantification studies on aged RAGE-null mice indicate that these mice spontaneously develop pulmonary fibrosis-like alterations. Furthermore, when subjected to a model of pulmonary fibrosis, RAGE-null mice developed more severe fibrosis, as measured by hydroxyproline assay and histological scoring, than wild-type controls. Combined with data from other studies on mouse models of pulmonary fibrosis and human IPF tissues indicate that loss of RAGE contributes to IPF pathogenesis.


Journal of The American Society of Nephrology | 2013

Loss of Klotho Contributes to Kidney Injury by Derepression of Wnt/β-Catenin Signaling

Lili Zhou; Yingjian Li; Dong Zhou; Roderick J. Tan; Youhua Liu

Aging is an independent risk factor for CKD, but the molecular mechanisms that link aging and CKD are not well understood. The antiaging protein Klotho may be an endogenous antagonist of Wnt/β-catenin signaling, which promotes fibrogenesis, suggesting that loss of Klotho may contribute to CKD through increased Wnt/β-catenin activity. Here, normal adult kidneys highly expressed Klotho in the tubular epithelium, but various models of nephropathy exhibited markedly less expression of Klotho. Loss of Klotho was closely associated with increased β-catenin in the diseased kidneys, suggesting an inverse correlation between Klotho and canonical Wnt signaling. In vitro, both full-length and secreted Klotho bound to multiple Wnts, including Wnt1, Wnt4, and Wnt7a. Klotho repressed gene transcription induced by Wnt but not by active β-catenin. Furthermore, Klotho blocked Wnt-triggered activation and nuclear translocation of β-catenin, as well as the expression of its target genes in tubular epithelial cells. Investigating potential mediators of Klotho loss in CKD, we found that TGF-β1 suppressed Klotho expression and concomitantly activated β-catenin; conversely, overexpression of Klotho abolished fibrogenic effects of TGF-β1. In two mouse models of CKD induced by unilateral ureteral obstruction or adriamycin, in vivo expression of secreted Klotho inhibited the activation of renal β-catenin and expression of its target genes. Secreted Klotho also suppressed myofibroblast activation, reduced matrix expression, and ameliorated renal fibrosis. Taken together, these results suggest that Klotho is an antagonist of endogenous Wnt/β-catenin activity; therefore, loss of Klotho may contribute to kidney injury by releasing the repression of pathogenic Wnt/β-catenin signaling.


American Journal of Physiology-renal Physiology | 2012

Matrix metalloproteinases in kidney homeostasis and diseases

Roderick J. Tan; Youhua Liu

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have been increasingly linked to both normal physiology and abnormal pathology in the kidney. Collectively able to degrade all components of the extracellular matrix, MMPs were originally thought to antagonize the development of fibrotic diseases solely through digestion of excessive matrix. However, increasing evidence has shown that MMPs play a wide variety of roles in regulating inflammation, epithelial-mesenchymal transition, cell proliferation, angiogenesis, and apoptosis. We now have robust evidence for MMP dysregulation in a multitude of renal diseases including acute kidney injury, diabetic nephropathy, glomerulonephritis, inherited kidney disease, and chronic allograft nephropathy. The goal of this review is to summarize current findings regarding the role of MMPs in kidney diseases as well as the mechanisms of action of this family of proteases.


Journal of The American Society of Nephrology | 2012

Matrix Metalloproteinase-7 as a Surrogate Marker Predicts Renal Wnt/β-Catenin Activity in CKD

Weichun He; Roderick J. Tan; Yingjian Li; Dan Wang; Jing Nie; Fan Fan Hou; Youhua Liu

A variety of chronic kidney diseases exhibit reactivation of Wnt/β-catenin signaling. In some tissues, β-catenin transcriptionally regulates matrix metalloproteinase-7 (MMP-7), but the association between MMP-7 and Wnt/β-catenin signaling in chronic kidney disease is unknown. Here, in mouse models of both obstructive nephropathy and focal segmental glomerulosclerosis (adriamycin nephropathy), we observed upregulation of MMP-7 mRNA and protein in a time-dependent manner. The pattern and extent of MMP-7 induction were positively associated with Wnt/β-catenin signaling in these models. Activation of β-catenin through ectopic expression of Wnt1 promoted MMP-7 expression in vivo, whereas delivery of the gene encoding the endogenous Wnt antagonist Dickkopf-1 abolished its induction. Levels of MMP-7 protein detected in the urine correlated with renal Wnt/β-catenin activity. Pharmacologic blockade of Wnt/β-catenin signaling by paricalcitol inhibited MMP-7 expression in diseased kidneys and reduced the levels detected in the urine. In vitro, β-catenin activation induced the expression and secretion of MMP-7 and promoted the binding of T cell factor to the MMP-7 promoter in kidney epithelial cells. We also observed higher levels of MMP-7 expression, which correlated with β-catenin, in kidney tissue from patients with various nephropathies. In summary, levels of renal MMP-7 correlate with Wnt/β-catenin activity, and urinary MMP-7 may be a noninvasive biomarker of this profibrotic signaling in the kidney.


Kidney International | 2014

Wnt/β-catenin signaling and kidney fibrosis

Roderick J. Tan; Dong Zhou; Lili Zhou; Youhua Liu

Wnt/β-catenin signaling is an evolutionarily conserved, highly complex, key developmental pathway that regulates cell fate, organ development, tissue homeostasis, as well as injury and repair. Although relatively silent in normal adult kidney, Wnt/β-catenin signaling is re-activated after renal injury in a wide variety of animal models and in human kidney disorders. Whereas some data point to a protective role of this signaling in healing and repair after acute kidney injury, increasing evidence suggests that sustained activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions. In kidney cells, Wnt/β-catenin promotes the expression of numerous fibrosis-related genes such as Snail1, plasminogen activator inhibitor-1, and matrix metalloproteinase-7. Recent studies also indicate that multiple components of the renin–angiotensin system are the direct downstream targets of Wnt/β-catenin. Consistently, inhibition of Wnt/β-catenin signaling by an assortment of strategies ameliorates kidney injury and mitigates renal fibrotic lesions in various models of chronic kidney disease, suggesting that targeting this signaling could be a plausible strategy for therapeutic intervention. In this mini review, we will briefly discuss the regulation, downstream targets, and mechanisms of Wnt/β-catenin signaling in the pathogenesis of kidney fibrosis.


Kidney International | 2013

Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury

Dong Zhou; Roderick J. Tan; Lin Lin; Lili Zhou; Youhua Liu

Hepatocyte growth factor is a pleiotrophic protein that promotes injury repair and regeneration in multiple organs. Here, we show that after acute kidney injury (AKI), the HGF receptor, c-met, was induced predominantly in renal tubular epithelium. To investigate the role of tubule-specific induction of c-met in AKI, we generated conditional knockout mice, in which the c-met gene was specifically disrupted in renal tubules. These Ksp-met−/−mice were phenotypically normal and had no appreciable defect in kidney morphology and function. However, in AKI induced by cisplatin or ischemia-reperfusion injury, the loss of tubular c-met substantially aggravated renal injury. Compared with controls, Ksp-met−/−mice displayed higher serum creatinine, more severe morphologic lesions, and increased apoptosis, which was accompanied by an increased expression of Bax and Fas ligand and decreased phosphorylation-activation of Akt. In addition, ablation of c-met in renal tubules promoted chemokine expression and renal inflammation after AKI. Consistently, ectopic expression of hepatocyte growth factor in vivo protected the kidneys against AKI in control mice, but not in Ksp-met−/−counterparts. Thus, our results suggest that tubule-specific c-met signaling is crucial in conferring renal protection after AKI, primarily by its anti-apoptotic and anti-inflammatory mechanisms.


Journal of The American Society of Nephrology | 2014

Sonic Hedgehog Is a Novel Tubule-Derived Growth Factor for Interstitial Fibroblasts after Kidney Injury

Dong Zhou; Yingjian Li; Lili Zhou; Roderick J. Tan; Liangxiang Xiao; Min Liang; Fan Fan Hou; Youhua Liu

Tubular epithelium constitutes the majority of the renal parenchyma and is the primary target of various kidney injuries. However, how the injured tubules drive interstitial fibroblast activation and proliferation remains poorly understood. Here, we investigated the role of sonic hedgehog (Shh), a secreted extracellular signaling protein, in fibroblast proliferation. Shh was induced in renal tubular epithelia in animal models of CKD induced by ischemia/reperfusion injury (IRI), adriamycin, or renal mass ablation, and in renal tubules of kidney biopsy specimens from CKD patients with different etiologies. Using Gli1-CreER(T2) reporter mice, we identified interstitial fibroblasts as the principal targets of renal Shh signaling in vivo. In vitro, incubation with Shh promoted normal rat kidney fibroblast proliferation, which was assessed by cell counting, MTT assay, and BrdU incorporation assay, and stimulated the induction of numerous proliferation-related genes. However, Shh had no effect on the proliferation of renal tubular epithelial cells. In vivo, overexpression of Shh promoted fibroblast expansion and aggravated kidney fibrotic lesions after IRI. Correspondingly, blockade of Shh signaling by cyclopamine, a small molecule inhibitor of Smoothened, inhibited fibroblast proliferation, reduced myofibroblast accumulation, and attenuated renal fibrosis. These studies identify Shh as a novel, specific, and potent tubule-derived growth factor that promotes interstitial fibroblast proliferation and activation. Our data also suggest that blockade of Shh signaling is a plausible strategy for therapeutic intervention of renal fibrosis.


American Journal of Pathology | 2015

Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System

Lili Zhou; Hongyan Mo; Jinhua Miao; Dong Zhou; Roderick J. Tan; Fan Fan Hou; Youhua Liu

Loss of Klotho and activation of the renin-angiotensin system (RAS) are common pathological findings in chronic kidney diseases. However, whether these two events are intricately connected is poorly understood. We hypothesized that Klotho might protect kidneys by targeted inhibition of RAS activation in diseased kidneys. To test this hypothesis, mouse models of remnant kidney, as well as adriamycin nephropathy and unilateral ureteral obstruction, were utilized. At 6 weeks after 5/6 nephrectomy, kidney injury was evident, characterized by elevated albuminuria and serum creatinine levels, and excessive deposition of interstitial matrix proteins. These lesions were accompanied by loss of renal Klotho expression, up-regulation of RAS components, and development of hypertension. In vivo expression of exogenous Klotho through hydrodynamic-based gene delivery abolished the induction of multiple RAS proteins, including angiotensinogen, renin, angiotensin-converting enzyme, and angiotensin II type 1 receptor, and normalized blood pressure. Klotho also inhibited β-catenin activation and ameliorated renal fibrotic lesions. Similar results were obtained in mouse models of adriamycin and obstructive nephropathy. In cultured kidney tubular epithelial cells, Klotho dose-dependently blocked Wnt1-triggered RAS activation. Taken together, these results demonstrate that Klotho exerts its renal protection by targeted inhibition of RAS, a pathogenic pathway known to play a key role in the evolution and progression of hypertension and chronic kidney disorders.


Journal of The American Society of Nephrology | 2016

Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression

Liangxiang Xiao; Dong Zhou; Roderick J. Tan; Haiyan Fu; Lili Zhou; Fan Fan Hou; Youhua Liu

AKI is increasingly recognized as a major risk factor for progression to CKD. However, the factors governing AKI to CKD progression are poorly understood. In this study, we investigated this issue using moderate (20 minutes) and severe (30 minutes) ischemia/reperfusion injury (IRI) in mice. Moderate IRI led to acute kidney failure and transient Wnt/β-catenin activation, which was followed by the restoration of kidney morphology and function. However, severe IRI resulted in sustained and exaggerated Wnt/β-catenin activation, which was accompanied by development of renal fibrotic lesions characterized by interstitial myofibroblast activation and excessive extracellular matrix deposition. To assess the role of sustained Wnt/β-catenin signaling in mediating AKI to CKD progression, we manipulated this signaling by overexpression of Wnt ligand or pharmacologic inhibition of β-catenin. In vivo, overexpression of Wnt1 at 5 days after IRI induced β-catenin activation and accelerated AKI to CKD progression. Conversely, blockade of Wnt/β-catenin by small molecule inhibitor ICG-001 at this point hindered AKI to CKD progression. In vitro, Wnt ligands induced renal interstitial fibroblast activation and promoted fibronectin expression. However, activated fibroblasts readily reverted to a quiescent phenotype after Wnt ligands were removed, suggesting that fibroblast activation requires persistent Wnt signaling. These results indicate that sustained, but not transient, activation of Wnt/β-catenin signaling has a decisive role in driving AKI to CKD progression.


Laboratory Investigation | 2016

Wnt/ β -catenin signaling in kidney injury and repair: a double-edged sword

Dong Zhou; Roderick J. Tan; Haiyan Fu; Youhua Liu

The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.

Collaboration


Dive into the Roderick J. Tan's collaboration.

Top Co-Authors

Avatar

Youhua Liu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Dong Zhou

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Tim D. Oury

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingjian Li

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Lili Zhou

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Fan Fan Hou

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lili Zhou

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Haiyan Fu

Southern Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge