Roderick Verhelst
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roderick Verhelst.
Veterinary Research | 2012
Martine Schroyen; Anneleen Stinckens; Roderick Verhelst; Theo Niewold; Nadine Buys
Diarrhoea due to enterotoxigenic Escherichia coli with fimbriae F4 (ETEC-F4) is an important problem in neonatal and just weaned piglets and hence for the pig farming industry. There is substantial evidence for a genetic basis for susceptibility to ETEC-F4 since not all piglets suffer from diarrhoea after an ETEC-F4 infection. It is assumed that the wild boar was originally ETEC-F4 resistant and that susceptibility towards ETEC arose after domestication. There are different phenotypes in the pig determined by which of the three existing F4 variants (F4ab, F4ac or F4ad) they are susceptible or resistant for. This suggests that several F4 receptors exist, expressed individually or in combination with each other on the brush border of the piglet’s small intestine. As such, the mucin-type glycoproteins (IMTGP) are described as F4ab/ac receptors, while the intestinal neutral glycospingolipid (IGLad) is proposed as an F4ad receptor. GP74 is a putative F4ab receptor. However, the specific genes that encode for the susceptibility are not yet known. In the past decades, linkage analyses revealed that the loci encoding for the receptor(s) for the two most frequent variants F4ab and F4ac were mapped to the 13th chromosome of the pig (Sus scrofa 13, SSC13). After fine mapping, the region of interest was mapped between two microsatellite markers, Sw207 and S0075, and interesting candidate genes surfaced. Numerous SNP analyses and a few expression studies on the three MUC-genes (MUC4, MUC13 and MUC20) and the transferrin receptor gene (TFRC) as well as on some other positional candidate genes have been performed in order to find the causative mutation for the ETEC-F4ab/ac receptor(s). However, until today, the exact mutation causing susceptibility to ETEC-F4 remains unknown.
Animal Genetics | 2012
Martine Schroyen; Anneleen Stinckens; Roderick Verhelst; Marisa Geens; Eric Cox; Theo Niewold; Nadine Buys
Enterotoxigenic Escherichia coli (ETEC) is one of the most frequently isolated enteropathogens in production animals, especially pigs and calves. Economically, the swine industry is by far the most affected by infections with ETEC because of mortality, morbidity and decreased growth rate of newborn and early-weaned piglets. After ingestion by the animal, these bacteria attach themselves to specific receptors on the small intestinal epithelium by means of proteinaceous surface appendages, the fimbriae. The F4 fimbriae, which attach to the F4 receptor, are the most studied. The aim of our study was to investigate gene expression in the small intestine of piglets of MUC13 and MUC20 in relation to animals with a different treatment towards or a different reaction on ETEC-F4ac by means of quantitative reverse transcription chain reaction (qRT/PCR). MUC13 and MUC20 are positional candidate genes for this F4ac receptor and are located in the region on SSC13q41 that segregates with the susceptibility to ETEC-F4ac. The condition of the small intestine is crucial when examining expression differences between different samples. Therefore, the expression of two genes, fatty-acid binding protein 2, intestinal (FABP2) and pancreatitis-associated protein (PAP), now known as regenerating islet-derived 3 alpha (REG3A) in the small intestine was simultaneously checked. FABP2, a standard for epithelial content, reflects the state of damage, whereas REG3A is a measure for inflammation in the small intestine. The four different substudies presented here suggest that expression of MUC13 and MUC20 is not related to the susceptibility of piglets to ETEC-F4ac.
Veterinary Microbiology | 2013
Roderick Verhelst; Martine Schroyen; Nadine Buys; Theodoor Niewold
Recently, polyphenol extracts were suggested to inhibit binding of Escherichia coli heat labile enterotoxin (LT) to its intestinal receptor GM1. Therefore, polyphenols are promising feed or food supplements to combat enterotoxigenic infections. Little is known of the precise mechanism, or the type of polyphenol required. Here, seven different polyphenols were tested in vitro (1) for inhibition of LT binding to GM1 (GM1-ELISA), (2) for LT inhibitory activity in the cAMP Vero-cell assay, and (3) by testing the aggregating properties of polyphenols with LT using molecular weight exclusion membrane filters, and by centrifugation techniques. Results showed only three out of seven polyphenols, pentagalloylglucose (PGG), epigallocatechingallate (EGCG) and gallocatechingallate (GCG), to effectively inhibit binding of LT to GM1, and to inhibit induction of cAMP in Vero cells, and that PGG is the most effective. Blocking of the GM1 receptor is unlikely as a mechanism because pre-incubation of GM1 with polyphenols had no effect. Co-incubation of polyphenols with forskolin did not interfere with cAMP production in Vero cells, showing that polyphenol activity is not directly related to cAMP. It is concluded that the inhibitory activities of these three polyphenols may coincide with the formation of large (>100 kDa) LT-polyphenol aggregates. Enterotoxin inactivation appears to require a minimum of two galloyl moieties in polyphenol structure and the pentagalloyl PGG is the most effective.
Veterinary Immunology and Immunopathology | 2013
Martine Schroyen; Bruno Goddeeris; Anneleen Stinckens; Roderick Verhelst; Steven Janssens; Eric Cox; Michel Georges; Theo Niewold; Nadine Buys
Diarrhoea in neonatal and early-weaned piglets due to enterotoxigenic Escherichia coli-F4 (ETEC-F4) is an important problem in the pig farming industry. There is substantial evidence for a genetic basis for susceptibility to ETEC-F4 since not all pigs suffer from diarrhoea after an ETEC-F4 infection. A region on SSC13 has been found to be in close linkage to the susceptibility of piglets for ETEC-F4ab,ac. Potential candidate genes on SSC13 have been examined and although some polymorphisms were found to be in linkage disequilibrium with the phenotype, the causative mutation has not yet been found. In this study we are looking at the expression of porcine genes in relation to ETEC-F4ab,ac. With the aid of the Affymetrix GeneChip Porcine Genome Array we were able to find differentially expressed genes between ETEC-F4ab,ac receptor positive (Fab,acR(+)) piglets without diarrhoea and F4ab,acR(+) piglets with diarrhoea or F4ab,acR(-) animals. Since the susceptibility to ETEC-F4ab,ac was described as a Mendelian trait, it is not so surprisingly that only two differentially expressed genes, transferrin receptor (TFRC) and trefoil factor 1 (TFF1), came out of the analysis. Although both genes could pass for functional candidate genes only TFRC also mapped to the region on SSC13 associated with susceptibility for ETEC-F4, which makes TFRC a positional functional candidate gene. Validation by qRT-PCR confirmed the differential expression of TFRC and TFF1. In piglets without diarrhoea, the expression of both genes was higher in F4ab,acR(+) than in F4ab,acR(-) piglets. Similarly, TFRC and TFF1 expression in F4ab,acR(+) piglets without diarrhoea was also higher than in F4ab,acR(+) piglets with diarrhoea. Consequently, although both genes might not play a role as receptor for F4 fimbriae, they could be of great importance during an ETEC-F4 outbreak. An upregulation of TFRC can be a consequence of the piglets ability to raise an effective immune response. An elevation of TFF1, a protein involved in mucin formation, may also affect the piglets capability to cope with ETEC bacteria, rather than being a receptor for its fimbriae.
Foodborne Pathogens and Disease | 2013
Roderick Verhelst; Martine Schroyen; Nadine Buys; Theo Niewold
Weaned piglets are very susceptible to diarrhea caused by enterotoxigenic Escherichia coli. In the past, various natural components were proposed to have beneficial effects by reducing the effects of diarrheal infectious diseases in humans and animals, and thus may represent an alternative for the use of (prophylactic) antibiotics. Alternatives may inactivate enterotoxigenic Escherichia coli heat-labile toxin (LT) by interfering with toxin binding to the cellular receptor GM1. In this study, various plants and other natural substances were tested for inhibitory properties, in the GM1 binding assay, and in the LT-induced cAMP production in Vero cells. The toxic dose of each compound was determined in a cell viability assay, and the highest nontoxic concentrations were used in the GM1 and cAMP assays. Results demonstrated that only d-(+)-galactose, lactose, N-acetyl-d-galactosamine, and two tea extracts were able to inhibit the binding of LT to its GM1 receptor. In the cAMP assay, only the two tea extracts showed inhibitory activity. This shows that d-(+)-galactose, lactose, and N-acetyl-d-galactosamine can indeed inhibit LT binding to GM1 based on structural homology with GM1 in the absence of living cells. However, in the cAMP assay, d-(+)-galactose, and lactose, N-acetyl-d-galactosamine are apparently metabolized to below their effective inhibitory concentration, likely predicting limited practical applicability in vivo. Both tea extracts maintained their activity in the presence of cells. The active compounds in both are probably polyphenols, which are not easily metabolized, and most likely work by aggregating the toxin. In conclusion, the combination of methods used here is a convenient and fast method for preselecting natural substances containing potentially toxin-binding compounds. Furthermore, if antidiarrhea activity is attributed to compounds found inactive here, their activity is unlikely based on interference with toxin binding.
Journal of Functional Foods | 2012
Theo Niewold; Martine Schroyen; Marisa Geens; Roderick Verhelst; Christophe M. Courtin
Livestock Science | 2010
Roderick Verhelst; Martine Schroyen; Nadine Buys; Theodoor Niewold
Livestock Science | 2014
Roderick Verhelst; Martine Schroyen; Nadine Buys; Theo Niewold
Communications in agricultural and applied biological sciences | 2011
Martine Schroyen; Anneleen Stinckens; Roderick Verhelst; Steven Janssens; Theodoor Niewold; Nadine Buys
Pig Genome III Conference | 2009
Martine Schroyen; Anneleen Stinckens; Roderick Verhelst; Theodoor Niewold; Nadine Buys