Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roderik Overzier is active.

Publication


Featured researches published by Roderik Overzier.


Nature | 2008

An extremely luminous X-ray outburst at the birth of a supernova.

Alicia M. Soderberg; Edo Berger; K. L. Page; P. Schady; Jerod T. Parrent; D. Pooley; X.-Y. Wang; E. O. Ofek; A. Cucchiara; A. Rau; Eli Waxman; Joshua D. Simon; D. C.-J. Bock; P. A. Milne; Mathew Page; J. C. Barentine; S. D. Barthelmy; A. P. Beardmore; M. F. Bietenholz; P. Brown; A. S. Burrows; D. N. Burrows; G. Byrngelson; S. B. Cenko; P. Chandra; J. R. Cummings; D. B. Fox; A. Gal-Yam; Neil Gehrels; S. Immler

Massive stars end their short lives in spectacular explosions—supernovae—that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their ‘delayed’ optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the ‘break-out’ of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.


Astrophysical Journal Supplement Series | 2007

A Search for Extended Ultraviolet Disk (XUV-Disk) Galaxies in the Local Universe

David Allan Thilker; Luciana Bianchi; Gerhardt R. Meurer; Armando Gil de Paz; S. Boissier; Barry F. Madore; A. Boselli; Annette M. N. Ferguson; J. C. Muñoz-Mateos; Greg J. Madsen; Salman Hameed; Roderik Overzier; Karl Forster; Peter G. Friedman; D. Christopher Martin; Patrick Morrissey; Susan G. Neff; David Schiminovich; Mark Seibert; Todd Small; Ted K. Wyder; Jose Donas; Timothy M. Heckman; Young-Wook Lee; Bruno Milliard; R. Michael Rich; Alexander S. Szalay; Barry Y. Welsh; Sukyoung K. Yi

We have initiated a search for extended ultraviolet disk (XUV-disk) galaxies in the local universe. Here we compare GALEX UV and visible-NIR images of 189 nearby (D < 40 Mpc) S0-Sm galaxies included in the GALEX Atlas of Nearby Galaxies and present the first catalog of XUV-disk galaxies. We find that XUV-disk galaxies are surprisingly common but have varied relative (UV/optical) extent and morphology. Type 1 objects (≳20% incidence) have structured, UV-bright/optically faint emission features in the outer disk, beyond the traditional star formation threshold. Type 2 XUV-disk galaxies (~10% incidence) exhibit an exceptionally large, UV-bright/optically low surface brightness (LSB) zone having blue UV-K_s outside the effective extent of the inner, older stellar population, but not reaching extreme galactocentric distance. If the activity occurring in XUV-disks is episodic, a higher fraction of present-day spirals could be influenced by such outer disk star formation. Type 1 disks are associated with spirals of all types, whereas Type 2 XUV-disks are predominantly found in late-type spirals. Type 2 XUV-disks are forming stars quickly enough to double their (currently low) stellar mass in the next Gyr (assuming a constant star formation rate). XUV-disk galaxies of both types are systematically more gas-rich than the general galaxy population. Minor external perturbation may stimulate XUV-disk incidence, at least for Type 1 objects. XUV-disks are the most actively evolving galaxies growing via inside-out disk formation in the current epoch, and may constitute a segment of the galaxy population experiencing significant, continued gas accretion from the intergalactic medium or neighboring objects.


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy formation in the Planck Cosmology I - Matching the observed evolution of star-formation rates, colours and stellar masses

Bruno M. B. Henriques; Simon D. M. White; Peter A. Thomas; Raul E. Angulo; Qi Guo; Gerard Lemson; Volker Springel; Roderik Overzier

We have updated the Munich galaxy formation model to the Planck first-year cosmology, while modifying the treatment of baryonic processes to reproduce recent data on the abundance and passive fractions of galaxies from z = 3 down to z = 0. Matching these more extensive and more precise observational results requires us to delay the reincorporation of wind ejecta, to lower the threshold for turning cold gas into stars, to eliminate ram-pressure stripping in halos less massive than 10 14 M⊙, and to modify our model for radio-mode feedback. These changes cure the most obvious failings of our previous models, namely the overly early formation of low-mass galaxies and the overly large fraction of them that are passive at late times. The new model reproduces the observed evolution both of the stellar mass function and of the distribution of star-formation rate at each stellar mass. Massive galaxies assemble most of their mass before z = 1 and are predominantly old and passive at z = 0, while lower mass galaxies assemble later and are predominantly blue and star-forming at z = 0. This phenomenological but physically based model allows the observations to be interpreted in terms of the eciency of the various processes t hat control the formation and evolution of galaxies as a function of their stellar mass, gas content, environment and time.


The Astrophysical Journal | 2009

EVOLUTION OF THE COLOR-MAGNITUDE RELATION IN GALAXY CLUSTERS AT z ∼ 1 FROM THE ACS INTERMEDIATE REDSHIFT CLUSTER SURVEY

Simona Mei; Brad P. Holden; John P. Blakeslee; Holland C. Ford; Marijn Franx; N. Homeier; Garth D. Illingworth; M. J. Jee; Roderik Overzier; Marc Postman; P. Rosati; Arjen van der Wel; James G. Bartlett

We apply detailed observations of the color-magnitude relation (CMR) with the Advanced Camera for Surveys on the Hubble Space Telescope to study galaxy evolution in eight clusters at z 1. The early-type red sequence is well defined and elliptical and lenticular galaxies lie on similar CMRs. We analyze CMR parameters—scatter, slope, and zero point—as a function of redshift, galaxy properties and cluster mass. For bright galaxies (MB – 21 mag). While the bright S0 population consistently shows larger scatter than the ellipticals, the scatter of the latter increases in the peripheral cluster regions. If we interpret these results as due to age differences, bright elliptical galaxies in cluster cores are, on average, older than S0 galaxies and peripheral elliptical galaxies (by about 0.5 Gyr, using a simple, single-burst solar metallicity stellar population model). The CMR zero point, slope, and scatter in the (U – B) z = 0 rest-frame show no significant evolution out to redshift z 1.3 or significant dependence on cluster mass. Two of our clusters display CMR zero points that are redder (by 2σ) than the average (U – B) z = 0 of our sample. We also analyze the fraction of morphological early-type and late-type galaxies on the red sequence. We find that, while in the majority of the clusters most (80% to 90%) of the CMR population is composed of early-type galaxies, in the highest-redshift, low-mass cluster of our sample, the CMR late-type/early-type fractions are similar (50%), with most of the late-type population composed of galaxies classified as S0/a. This trend is not correlated with the clusters X-ray luminosity, or with its velocity dispersion, and could be a real evolution with redshift.


The Astrophysical Journal | 2011

Extreme Feedback and the Epoch of Reionization: Clues in the Local Universe

Timothy M. Heckman; Sanchayeeta Borthakur; Roderik Overzier; Guinevere Kauffmann; Antara R. Basu-Zych; Claus Leitherer; K. R. Sembach; D. Chris Martin; R. Michael Rich; David Schiminovich; Mark Seibert

The source responsible for reionizing the universe at z > 6 remains uncertain. While an energetically adequate population of star-forming galaxies may be in place, it is unknown whether a large enough fraction of their ionizing radiation can escape into the intergalactic medium. Attempts to measure this escape fraction in intensely star-forming galaxies at lower redshifts have largely yielded upper limits. In this paper, we present new Hubble Space Telescope Cosmic Origins Spectrograph and archival Far-Ultraviolet Spectroscopic Explorer (FUSE) far-UV spectroscopy of a sample of 11 Lyman Break Analogs (LBAs), a rare population of local galaxies that strongly resemble the high-z Lyman Break galaxies. We combine these data with Sloan Digital Sky Survey optical spectra and Spitzer photometry. We also analyze archival FUSE observations of 15 typical UV-bright local starbursts. We find evidence of small covering factors for optically thick neutral gas in three cases. This is based on two independent pieces of evidence: a significant residual intensity in the cores of the strongest interstellar absorption-lines tracing neutral gas and a small ratio of extinction-corrected Hα to UV plus far-IR luminosities. These objects represent three of the four LBAs that contain a young, very compact (~10^2 pc), and highly massive (~10^9 M_⊙) dominant central object (DCO). These three objects also differ from the other galaxies in showing a significant amount of blueshifted Lyα emission, which may be related to the low covering factor of neutral gas. All four LBAs with DCOs in our sample show extremely high velocity outflows of interstellar gas, with line centroids blueshifted by about 700 km s^(–1) and maximum outflow velocities reaching at least 1500 km s^(–1). We show that these properties are consistent with an outflow driven by a powerful starburst that is exceptionally compact. We speculate that such extreme feedback may be required to enable the escape of ionizing radiation from star-forming galaxies.


The Astrophysical Journal | 2008

Hubble space telescope morphologies of local Lyman break galaxy analogs - I. Evidence for starbursts triggered by merging

Roderik Overzier; Timothy M. Heckman; Guinevere Kauffmann; Mark Seibert; R. Michael Rich; Antara R. Basu-Zych; Jennifer M. Lotz; Alessandra Aloisi; S. Charlot; Charles G. Hoopes; D. Christopher Martin; David Schiminovich; Barry F. Madore

Heckman and coworkers used the GALEX UV imaging survey to show that there exists a rare population of nearby compact UV-luminous galaxies (UVLGs) that closely resemble high-redshift Lyman break galaxies (LBGs). We present HST images in the UV, optical, and Hα and resimulate them at the depth and resolution of the GOODS/UDF fields to show that the morphologies of UVLGs are also similar to those of LBGs. Our sample of eight LBG analogs thus provides detailed insight into the connection between star formation and LBG morphology. Faint tidal features or companions can be seen in all of the rest-frame optical images, suggesting that the starbursts are the result of a merger or interaction. The UV/optical light is dominated by unresolved (~100-300 pc) super starburst regions (SSBs). A detailed comparison with the galaxies Haro 11 and VV 114 at z = 0.02 indicates that the SSBs themselves consist of diffuse stars and (super) star clusters. The structural features revealed by the new HST images occur on very small physical scales and are thus not detectable in images of high-redshift LBGs, except in a few cases where they are magnified by gravitational lensing. We propose, therefore, that LBGs are mergers of gas-rich, relatively low-mass (M_* ~ 10^(10) M☉) systems, and that the mergers trigger the formation of SSBs. If galaxies at high redshifts are dominated by SSBs, then the faint-end slope of the luminosity function is predicted to have slope α ~ 2. Our results are the most direct confirmation to date of models that predict that the main mode of star formation in the early universe was highly collisional.


The Astrophysical Journal | 2011

The extreme hosts of extreme supernovae

James D. Neill; Mark Sullivan; Avishay Gal-Yam; Robert Michael Quimby; Eran O. Ofek; Ted K. Wyder; D. Andrew Howell; Peter E. Nugent; Mark Seibert; D. Christopher Martin; Roderik Overzier; Tom A. Barlow; Karl Foster; Peter G. Friedman; Patrick Morrissey; Susan G. Neff; David Schiminovich; Luciana Bianchi; Jose Donas; Timothy M. Heckman; Young-Wook Lee; Barry F. Madore; Bruno Milliard; R. Michael Rich; Alexander S. Szalay

We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of 17 luminous supernovae (LSNe, having peak M_V 100 M_☉), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.


The Astrophysical Journal | 2009

LOCAL LYMAN BREAK GALAXY ANALOGS: THE IMPACT OF MASSIVE STAR-FORMING CLUMPS ON THE INTERSTELLAR MEDIUM AND THE GLOBAL STRUCTURE OF YOUNG, FORMING GALAXIES

Roderik Overzier; Timothy M. Heckman; Christy A. Tremonti; Lee Armus; Antara R. Basu-Zych; Thiago S. Goncalves; R. Michael Rich; D. Christopher Martin; A. Ptak; David Schiminovich; Holland C. Ford; Barry F. Madore; Mark Seibert

We report on the results of Hubble Space Telescope optical and UV imaging, Spitzer mid-IR photometry, and optical spectroscopy of a sample of 30 low-redshift (z ~ 0.1 to 0.3) galaxies chosen from the Sloan Digital Sky Survey and Galaxy Evolution Explorer surveys to be accurate local analogs of the high-redshift Lyman break galaxies. The Lyman break analogs (LBAs) are similar in stellar mass, metallicity, dust extinction, star formation rate (SFR), physical size, and gas velocity dispersion, thus enabling a detailed investigation of many processes that are important in star-forming galaxies at high redshift. The main optical emission-line properties of LBAs, including evidence for outflows, are also similar to those typically found at high redshift. This indicates that the conditions in their interstellar medium are comparable. In the UV, LBAs are characterized by complexes of massive clumps of star formation, while in the optical they most often show evidence for (post-)mergers and interactions. In six cases, we find a single extremely massive (up to several ×10^9 M_☉) compact (radius ~10^2 pc) dominant central object (DCO). The DCOs are preferentially found in LBAs with the highest mid-IR luminosities (L_(24 μm) = 10^(10.3)-10^(11.2) L_☉) and correspondingly high SFRs (15-100 M_☉ yr^(–1)). We show that the massive star-forming clumps (including the DCOs) have masses much larger than the nuclear super star clusters seen in normal late-type galaxies. However, the DCOs do have masses, sizes, and densities similar to the excess light/central cusps seen in typical elliptical galaxies with masses similar to the LBA galaxies. We suggest that the DCOs form in the present-day examples of the dissipative mergers at high redshift that are believed to have produced the central cusps in local ellipticals (consistent with the disturbed optical morphologies of the LBAs). More generally, the properties of the LBAs are consistent with the idea that instabilities in a gas-rich disk lead to very massive star-forming clumps that eventually coalesce to form a spheroid. Finally, we comment on the apparent lack of energetically significant active galactic nuclei in the DCOs. We speculate that the DCOs are too young at present to grow a supermassive black hole because they are still in a supernova-dominated outflow phase (age less than 50 Myr).


Science | 2014

A local clue to the reionization of the universe.

Sanchayeeta Borthakur; Timothy M. Heckman; Claus Leitherer; Roderik Overzier

Identifying the population of galaxies that was responsible for the reionization of the universe is a long-standing quest in astronomy. We present a possible local analog that has an escape fraction of ionizing flux of 21%. Our detection confirms the existence of gaps in the neutral gas enveloping the starburst region. The candidate contains a massive yet highly compact star-forming region. The gaps are most likely created by the unusually strong winds and intense ionizing radiation produced by this extreme object. Our study also validates the indirect technique of using the residual flux in saturated low-ionization interstellar absorption lines for identifying such leaky galaxies. Because direct detection of ionizing flux is impossible at the epoch of reionization, this represents a highly valuable technique for future studies. A compact starburst galaxy is identified as an analog to those that reionized the early universe with energetic starlight. A light leak to transform the universe After the universe had cooled into an expanse of neutral gas after the Big Bang, how did the first starlight emerge from the dark? Borthakur et al. found a local starburst galaxy that leaks continuum radiation, which may provide some clues. Wind-generated gaps in the neutral gas enable large fractions of ionizing radiation to escape, possibly mimicking processes in the early universe. Science, this issue p. 216


The Astrophysical Journal | 2015

THE SYSTEMATIC PROPERTIES OF THE WARM PHASE OF STARBURST-DRIVEN GALACTIC WINDS

Timothy M. Heckman; Rachel M. Alexandroff; Sanchayeeta Borthakur; Roderik Overzier; Claus Leitherer

Using ultraviolet absorption lines, we analyze the systematic properties of the warm ionized phase of starburst-driven winds in a sample of 39 low-redshift objects that spans broad ranges in starburst and galaxy properties. Total column densities for the outflows are ∼1021 cm−2. The outflow velocity (vout) correlates only weakly with the galaxy stellar mass (), or circular velocity (vcir), but strongly with both SFR and SFR/area. The normalized outflow velocity () correlates well with both SFR/area and SFR/. The estimated outflow rates of warm ionized gas () are ∼1–4 times the SFR, and the ratio does not correlate with vout. We show that a model of a population of clouds accelerated by the combined forces of gravity and the momentum flux from the starburst matches the data. We find a threshold value for the ratio of the momentum flux supplied by the starburst to the critical momentum flux needed for the wind to overcome gravity acting on the clouds (Rcrit). For 10 (strong-outflows) the outflow’s momentum flux is similar to the total momentum flux from the starburst and the outflow velocity exceeds the galaxy escape velocity. Neither of these is the case for the weak outflows ( 10). For the weak-outflows, the data severely disagree with many prescriptions in numerical simulations or semi-analytic models of galaxy evolution. The agreement is better for the strong outflows, and we advocate the use of Rcrit to guide future prescriptions.

Collaboration


Dive into the Roderik Overzier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Zirm

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Schiminovich

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge