Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodger Duffin is active.

Publication


Featured researches published by Rodger Duffin.


Nature Nanotechnology | 2008

Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study

Craig A. Poland; Rodger Duffin; Ian A. Kinloch; Andrew D. Maynard; William Wallace; Anthony Seaton; Vicki Stone; S. A. Brown; William MacNee; Ken Donaldson

Carbon nanotubes have distinctive characteristics, but their needle-like fibre shape has been compared to asbestos, raising concerns that widespread use of carbon nanotubes may lead to mesothelioma, cancer of the lining of the lungs caused by exposure to asbestos. Here we show that exposing the mesothelial lining of the body cavity of mice, as a surrogate for the mesothelial lining of the chest cavity, to long multiwalled carbon nanotubes results in asbestos-like, length-dependent, pathogenic behaviour. This includes inflammation and the formation of lesions known as granulomas. This is of considerable importance, because research and business communities continue to invest heavily in carbon nanotubes for a wide range of products under the assumption that they are no more hazardous than graphite. Our results suggest the need for further research and great caution before introducing such products into the market if long-term harm is to be avoided.


Particle and Fibre Toxicology | 2005

Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure

Ken Donaldson; Lang Tran; Luis A. Jimenez; Rodger Duffin; David E. Newby; Nicholas L. Mills; William MacNee; Vicki Stone

This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP) following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research.


Particle and Fibre Toxicology | 2010

Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma

Ken Donaldson; Fiona Murphy; Rodger Duffin; Craig A. Poland

The unique hazard posed to the pleural mesothelium by asbestos has engendered concern in potential for a similar risk from high aspect ratio nanoparticles (HARN) such as carbon nanotubes. In the course of studying the potential impact of HARN on the pleura we have utilised the existing hypothesis regarding the role of the parietal pleura in the response to long fibres. This review seeks to synthesise our new data with multi-walled carbon nanotubes (CNT) with that hypothesis for the behaviour of long fibres in the lung and their retention in the parietal pleura leading to the initiation of inflammation and pleural pathology such as mesothelioma. We describe evidence that a fraction of all deposited particles reach the pleura and that a mechanism of particle clearance from the pleura exits, through stomata in the parietal pleura. We suggest that these stomata are the site of retention of long fibres which cannot negotiate them leading to inflammation and pleural pathology including mesothelioma. We cite thoracoscopic data to support the contention, as would be anticipated from the preceding, that the parietal pleura is the site of origin of pleural mesothelioma. This mechanism, if it finds support, has important implications for future research into the mesothelioma hazard from HARN and also for our current view of the origins of asbestos-initiated pleural mesothelioma and the common use of lung parenchymal asbestos fibre burden as a correlate of this tumour, which actually arises in the parietal pleura.


Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung | 2002

The pulmonary toxicology of ultrafine particles.

Ken Donaldson; David M. Brown; Anna Clouter; Rodger Duffin; William MacNee; Louise Renwick; Lang Tran; Vicki Stone

Ultrafine particles are a component of air pollution, derived from primary combustion sources, and so we have undertaken a programme of study on the mechanisms of lung injury caused by ultrafine particles. Ultrafine particles made of low-solubility, low-toxicity materials are more inflammogenic in the rat lung than fine respirable, particles made from the same material. Ultrafine particles can cause inflammation via processes independent of the release of transition metals, as shown by the fact that soluble products from ultrafine carbon black have no ability to cause inflammation. The property that drives the greater inflammogenicity of ultrafines is unknown but very likely relates to particle surface area and involves oxidative stress. Increases in intracellular Ca(++) may underlie the cellular effects of ultrafines, although the mechanism whereby ultrafines have this effect is not understood. However, increased influx of Ca(++) into macrophages occurs via the membrane Ca(++) channels following contact with ultrafine particles, and involves oxidative stress. Increased Ca(++) in macrophages exposed to ultrafines can lead to the transcription of key pro-inflammatory genes such as TNFalpha. Ultrafine particles can also impair the ability of macrophages to phagocytose and clear other particles, and this may be pro-inflammogenic.


Inhalation Toxicology | 2007

Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles In Vivo and In Vitro: Highlighting the Role of Particle Surface Area and Surface Reactivity

Rodger Duffin; Lang Tran; David M. Brown; Vicki Stone; Ken Donaldson

Different particle types cause excessive lung inflammation that is thought to play a role in the various types of pathology they produce. Recently attention has been focused on nanoparticles due to their presence in environmental particulate air pollution, their use and exposure in occupational settings, and their potential use in nanotechnology and novel therapeutics. We have shown previously that the surface area metric drives the overload response. We have instilled a number of low-toxicity dusts of various particle sizes and assessed neutrophil influx into the lung at 18–24 h postinstillation. The extent of inflammation was demonstrated as being a function not of the mass dose instilled but interestingly of the surface area dose instilled. Since low-toxicity nanoparticles present a “special” case of high surface area, they are relatively inflammogenic. We tested whether we could use this approach to model the reactivity of highly toxic dusts. Rats were instilled with either DQ12 quartz or aluminum lactate-treated DQ12 and, as anticipated, the high specific surface toxicity of DQ12 meant that it was much more inflammogenic (63 times more) than the surface area alone would have predicted. By contrast, aluminum lactate-treated DQ12 fell into the line of “low-toxicity” dusts. In addition, as an in vitro testing alternative to that of in vivo testing, interleukin (IL)-8 production in A549 cells exposed to the panel of various particles clearly demonstrated the ability to also identify a relationship between surface area dose and reactivity. These approaches present the possibility of modelling potential toxicity of nanoparticles and nuisance dusts based on the inflammatory response of a given instilled surface area dose.


Toxicology and Applied Pharmacology | 2008

The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line

Martin J. D. Clift; Barbara Rothen-Rutishauser; David M. Brown; Rodger Duffin; Ken Donaldson; Lorna Proudfoot; Keith Guy; Vicki Stone

This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.


Inhalation Toxicology | 2008

Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - A case study

Barry Park; Ken Donaldson; Rodger Duffin; Lang Tran; Frank J. Kelly; Ian Mudway; Jean-Paul Morin; Robert Guest; Peter Jenkinson; Zissis Samaras; Myrsini Giannouli; Haris Kouridis; Patricia Martin

Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO2), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems.


American Journal of Pathology | 2011

Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura

Fiona Murphy; Craig A. Poland; Rodger Duffin; Khuloud T. Al-Jamal; Hanene Ali-Boucetta; Antonio Nunes; Fiona Byrne; Adriele Prina-Mello; Yuri Volkov; Shouping Li; Stephen J. Mather; Alberto Bianco; Maurizio Prato; William MacNee; William Wallace; Kostas Kostarelos; Ken Donaldson

The fibrous shape of carbon nanotubes (CNTs) raises concern that they may pose an asbestos-like inhalation hazard, leading to the development of diseases, especially mesothelioma. Direct instillation of long and short CNTs into the pleural cavity, the site of mesothelioma development, produced asbestos-like length-dependent responses. The response to long CNTs and long asbestos was characterized by acute inflammation, leading to progressive fibrosis on the parietal pleura, where stomata of strictly defined size limit the egress of long, but not short, fibers. This was confirmed by demonstrating clearance of short, but not long, CNT and nickel nanowires and by visualizing the migration of short CNTs from the pleural space by single-photon emission computed tomographic imaging. Our data confirm the hypothesis that, although a proportion of all deposited particles passes through the pleura, the pathogenicity of long CNTs and other fibers arises as a result of length-dependent retention at the stomata on the parietal pleura.


Journal of Innate Immunity | 2010

Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease

Sarah Fox; Andrew E. Leitch; Rodger Duffin; Christopher Haslett; Adriano G. Rossi

Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses.


Environmental Health Perspectives | 2010

Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing

Wan-Seob Cho; Rodger Duffin; Craig A. Poland; Sarah E. M. Howie; William MacNee; Mark Bradley; Ian L. Megson; Ken Donaldson

Background Metal oxide nanoparticles (NPs) have been widely used in industry, cosmetics, and biomedicine. Objectives We examined hazards of several well-characterized high production volume NPs because of increasing concern about occupational exposure via inhalation. Methods A panel of well-characterized NPs [cerium oxide (CeO2NP), titanium dioxide (TiO2NP), carbon black (CBNP), silicon dioxide (SiO2NP), nickel oxide (NiONP), zinc oxide (ZnONP), copper oxide (CuONP), and amine-modified polystyrene beads] was instilled into lungs of rats. We evaluated the inflammation potencies of these NPs 24 hr and 4 weeks postinstillation. For NPs that caused significant inflammation at 24 hr, we then investigated the characteristics of the inflammation. All exposures were carried out at equal-surface-area doses. Results Only CeO2NP, NiONP, ZnONP, and CuONP were inflammogenic to the lungs of rats at the high doses used. Strikingly, each of these induced a unique inflammatory footprint both acutely (24 hr) and chronically (4 weeks). Acutely, patterns of neutrophil and eosinophil infiltrates differed after CeO2NP, NiONP, ZnONP, and CuONP treatment. Chronic inflammatory responses also differed after 4 weeks, with neutrophilic, neutrophilic/lymphocytic, eosinophilic/fibrotic/granulomatous, and fibrotic/granulomatous inflammation being caused respectively by CeO2NP, NiONP, ZnONP, and CuONP. Conclusion Different types of inflammation imply different hazards in terms of pathology, risks, and risk severity. In vitro testing could not have differentiated these complex hazard outcomes, and this has important implications for the global strategy for NP hazard assessment. Our results demonstrate that NPs cannot be viewed as a single hazard entity and that risk assessment should be performed separately and with caution for different NPs.

Collaboration


Dive into the Rodger Duffin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge