Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodion Gorchakov is active.

Publication


Featured researches published by Rodion Gorchakov.


Journal of Virology | 2007

The Old World and New World Alphaviruses Use Different Virus-Specific Proteins for Induction of Transcriptional Shutoff

Natalia Garmashova; Rodion Gorchakov; Eugenia Volkova; Slobodan Paessler; Elena I. Frolova; Ilya Frolov

ABSTRACT Alphaviruses are widely distributed throughout the world. During the last few thousand years, the New World viruses, including Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV), evolved separately from those of the Old World, i.e., Sindbis virus (SINV) and Semliki Forest virus (SFV). Nevertheless, the results of our study indicate that both groups have developed the same characteristic: their replication efficiently interferes with cellular transcription and the cell response to virus replication. Transcriptional shutoff caused by at least two of the Old World alphaviruses, SINV and SFV, which belong to different serological complexes, depends on nsP2, but not on the capsid protein, functioning. Our data suggest that the New World alphaviruses VEEV and EEEV developed an alternative mechanism of transcription inhibition that is mainly determined by their capsid protein, but not by the nsP2. The ability of the VEEV capsid to inhibit cellular transcription appears to be controlled by the amino-terminal fragment of the protein, but not by its protease activity or by the positively charged RNA-binding domain. These data provide new insights into alphavirus evolution and present a plausible explanation for the particular recombination events that led to the formation of western equine encephalitis virus (WEEV) from SINV- and EEEV-like ancestors. The recombination allowed WEEV to acquire capsid protein functioning in transcription inhibition from EEEV-like virus. Identification of the new functions in the New World alphavirus-derived capsids opens an opportunity for developing new, safer alphavirus-based gene expression systems and designing new types of attenuated vaccine strains of VEEV and EEEV.


Journal of Virology | 2006

Sindbis Virus Nonstructural Protein nsP2 Is Cytotoxic and Inhibits Cellular Transcription

Natalia Garmashova; Rodion Gorchakov; Elena I. Frolova; Ilya Frolov

ABSTRACT Replication of alphaviruses in vertebrate cells strongly affects cell physiology and ultimately leads to development of a cytopathic effect (CPE) and cell death. Sindbis virus (SIN) replication causes major changes in cellular macromolecular synthesis, in which the strong downregulation of transcription of cellular mRNAs and rRNAs plays a critical role. SIN nonstructural protein nsP2 was previously proposed as one of the main regulators of virus-host cell interactions, because point mutations in the carboxy-terminal part of nsP2 could make SIN and other alphaviruses and replicons less cytopathic and capable of persisting in some vertebrate cell lines. These mutants were incapable of inhibiting transcription and downregulating a viral stress-induced cell response. In the present work, we demonstrate that (i) SIN nsP2 is critically involved in CPE development, not only during the replication of SIN-specific RNAs, but also when this protein is expressed alone from different expression cassettes; (ii) the cytotoxic effect of SIN nsP2 appears to be at least partially determined by its ability to cause transcriptional shutoff; (iii) these functions of SIN nsP2 are determined by the integrity of the carboxy-terminal peptide of this protein located outside its helicase and protease domains, rather than by its protease activity; and (iv) the cytotoxic activity of SIN nsP2 depends on the presence of this protein in a free form, and alterations in P123 processing abolish the ability of nsP2 to cause CPE.


Journal of Virology | 2005

Inhibition of Transcription and Translation in Sindbis Virus-Infected Cells

Rodion Gorchakov; Elena I. Frolova; Ilya Frolov

ABSTRACT Alphaviruses are arthropod-borne viruses (arboviruses) that include a number of important human and animal pathogens. The natural transmission cycle of alphaviruses requires their presence at high concentrations in the blood of amplification hosts for efficient infection of mosquito vectors. The high-titer viremia development implies multiple rounds of infection that proceed in the background of the developing antiviral cell response aimed at blocking virus spread on an organismal level. Therefore, as for many viruses, if not most of them, alphaviruses have evolved mechanisms directed toward downregulating different components of the antiviral cell reaction and increasing viremia to a level sufficient for the next round of transmission. Using Sindbis virus (SIN) as a model, we demonstrated that (i) the replication of wild-type SIN strongly affects major cellular processes, e.g., transcription and translation of mRNAs; (ii) transcriptional and translational shutoffs are distinctly independent events, and their development can be differentially manipulated by creating different mutations in SIN nonstructural protein nsP2; and (iii) inhibition of transcription, but not translation, is a critical mechanism that SIN employs to suppress the expression of cellular viral stress-inducible genes in cells of vertebrate origin. Downregulation of transcription of all of the cellular mRNAs appears to be a very efficient means of reducing the development of an antiviral response. The ability to cause transcriptional shutoff may partially determine SIN host range and replication in particular tissues.


Journal of Virology | 2010

Functional Sindbis Virus Replicative Complexes Are Formed at the Plasma Membrane

Elena I. Frolova; Rodion Gorchakov; Larisa Pereboeva; Svetlana Atasheva; Ilya Frolov

ABSTRACT Formation of virus-specific replicative complexes (RCs) in infected cells is one of the most intriguing and important processes that determine virus replication and ultimately their pathogenesis on the molecular and cellular levels. Alphavirus replication was known to lead to formation of so-called type 1 cytopathic vacuoles (CPV1s), whose distinguishing feature is the presence of numerous membrane invaginations (spherules) and accumulation of viral nonstructural proteins (nsPs) at the cytoplasmic necks of these spherules. These CPV1s, modified endosomes and lysosomes, were proposed as the sites of viral RNA synthesis. However, our recent studies have demonstrated that Sindbis virus (SINV)-specific, double-stranded RNA (dsRNA)- and nonstructural protein (nsP)-containing RCs are initially formed at the plasma membrane. In this new study, we present extensive evidence that (i) in cells of vertebrate origin, at early times postinfection, viral nsPs colocalize with spherules at the plasma membrane; (ii) viral dsRNA intermediates are packed into membrane spherules and are located in their cavities on the external surface of the plasma membrane; (iii) formation of the membrane spherules is induced by the partially processed nonstructural polyprotein P123 and nsP4, but synthesis of dsRNA is an essential prerequisite of their formation; (iv) plasma membrane-associated dsRNA and protein structures are the active sites of single-stranded RNA (ssRNA) synthesis; (v) at late times postinfection, only a small fraction of SINV nsP-containing complexes are relocalized into the cytoplasm on the endosome membrane. (vi) pharmacological drugs inhibiting different endocytotic pathways have either only minor or no negative effects on SINV RNA replication; and (vii) in mosquito cells, at any times postinfection, dsRNA/nsP complexes and spherules are associated with both endosomal/lysosomal and plasma membranes, suggesting that mechanisms of RC formation may differ in cells of insect and vertebrate origins.


The EMBO Journal | 2011

4.4 Å cryo‐EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus

Rui Zhang; Corey F. Hryc; Yao Cong; Xiangan Liu; Joanita Jakana; Rodion Gorchakov; Matthew L. Baker; Scott C. Weaver; Wah Chiu

Venezuelan equine encephalitis virus (VEEV), a member of the membrane‐containing Alphavirus genus, is a human and equine pathogen, and has been developed as a biological weapon. Using electron cryo‐microscopy (cryo‐EM), we determined the structure of an attenuated vaccine strain, TC‐83, of VEEV to 4.4 Å resolution. Our density map clearly resolves regions (including E1, E2 transmembrane helices and cytoplasmic tails) that were missing in the crystal structures of domains of alphavirus subunits. These new features are implicated in the fusion, assembly and budding processes of alphaviruses. Furthermore, our map reveals the unexpected E3 protein, which is cleaved and generally thought to be absent in the mature VEEV. Our structural results suggest a mechanism for the initial stage of nucleocapsid core formation, and shed light on the virulence attenuation, host recognition and neutralizing activities of VEEV and other alphavirus pathogens.


Journal of Virology | 2008

Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells

Rodion Gorchakov; Natalia Garmashova; Elena I. Frolova; Ilya Frolov

ABSTRACT Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions.


PLOS Pathogens | 2011

Novel Chikungunya Vaccine Candidate with an IRES-Based Attenuation and Host Range Alteration Mechanism

Kenneth Plante; Eryu Wang; Charalambos D. Partidos; James Weger; Rodion Gorchakov; Konstantin A. Tsetsarkin; Erin M. Borland; Ann M. Powers; Robert L. Seymour; Dan T. Stinchcomb; Jorge E. Osorio; Ilya Frolov; Scott C. Weaver

Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that has recently caused devastating urban epidemics of severe and sometimes chronic arthralgia. As with most other mosquito-borne viral diseases, control relies on reducing mosquito populations and their contact with people, which has been ineffective in most locations. Therefore, vaccines remain the best strategy to prevent most vector-borne diseases. Ideally, vaccines for diseases of resource-limited countries should combine low cost and single dose efficacy, yet induce rapid and long-lived immunity with negligible risk of serious adverse reactions. To develop such a vaccine to protect against chikungunya fever, we employed a rational attenuation mechanism that also prevents the infection of mosquito vectors. The internal ribosome entry site (IRES) from encephalomyocarditis virus replaced the subgenomic promoter in a cDNA CHIKV clone, thus altering the levels and host-specific mechanism of structural protein gene expression. Testing in both normal outbred and interferon response-defective mice indicated that the new vaccine candidate is highly attenuated, immunogenic and efficacious after a single dose. Furthermore, it is incapable of replicating in mosquito cells or infecting mosquitoes in vivo. This IRES-based attenuation platform technology may be useful for the predictable attenuation of any alphavirus.


Journal of Virology | 2004

PKR-dependent and -independent mechanisms are involved in translational shutoff during Sindbis virus infection.

Rodion Gorchakov; Elena I. Frolova; Bryan R. G. Williams; Charles M. Rice; Ilya Frolov

ABSTRACT The replication of Sindbis virus (SIN) profoundly affects the metabolism of infected vertebrate cells. One of the main events during SIN infection is the strong inhibition of translation of cellular mRNAs. In this study, we used a combination of approaches, including the study of SIN replication in PKR−/− mouse embryo fibroblasts or in the presence of an excess of catalytically inactive PKR. We show that the PKR-dependent inhibition of translation is not the only and most likely not the major pathway mediating translational shutoff during SIN infection. The PKR-independent mechanism strongly affects the translation of cellular templates, whereas translation of SIN subgenomic RNA is resistant to inhibition, and this leads to a benefit for viral replication. Our findings suggest that both PKR-dependent and non-PKR-dependent mechanisms of SIN-induced translational shutoff can be manipulated by using SIN replicons expressing mutated SIN nsP2 or kinase-defective PKR. Specifically, we show that expression of heterologous genes from SIN-based and most likely other alphavirus-based replicons can be increased by downregulating both the PKR-dependent and PKR-independent translational shutoffs.


Journal of Virology | 2005

Noncytopathic Replication of Venezuelan Equine Encephalitis Virus and Eastern Equine Encephalitis Virus Replicons in Mammalian Cells

Olga Petrakova; Eugenia Volkova; Rodion Gorchakov; Slobodan Paessler; Richard M. Kinney; Ilya Frolov

ABSTRACT Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5′ untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.


Emerging Infectious Diseases | 2017

Prolonged Detection of Zika Virus in Vaginal Secretions and Whole Blood

Kristy O. Murray; Rodion Gorchakov; Anna R. Carlson; Rebecca Berry; Lilin Lai; Muktha S Natrajan; Melissa N. Garcia; Armando Correa; Shital M. Patel; Kjersti Aagaard; Mark J. Mulligan

Infection with Zika virus is an emerging public health crisis. We observed prolonged detection of virus RNA in vaginal mucosal swab specimens and whole blood for a US traveler with acute Zika virus infection who had visited Honduras. These findings advance understanding of Zika virus infection and provide data for additional testing strategies.

Collaboration


Dive into the Rodion Gorchakov's collaboration.

Top Co-Authors

Avatar

Kristy O. Murray

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilya Frolov

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Melissa N. Garcia

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Elena I. Frolova

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Farooq Nasar

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Peter J. Hotez

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Robert B. Tesh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Gunter

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Eryu Wang

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge