Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodney J. Johnson is active.

Publication


Featured researches published by Rodney J. Johnson.


Science | 2007

Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms

Dennis J. McGillicuddy; Laurence A. Anderson; Nicholas R. Bates; Thomas S. Bibby; Ken O. Buesseler; Craig A. Carlson; Cabell S. Davis; Courtney S. Ewart; Paul G. Falkowski; Sarah A. Goldthwait; Dennis A. Hansell; William J. Jenkins; Rodney J. Johnson; Valery Kosnyrev; James R. Ledwell; Qian P. Li; David A. Siegel; Deborah K. Steinberg

Episodic eddy-driven upwelling may supply a significant fraction of the nutrients required to sustain primary productivity of the subtropical ocean. New observations in the northwest Atlantic reveal that, although plankton blooms occur in both cyclones and mode-water eddies, the biological responses differ. Mode-water eddies can generate extraordinary diatom biomass and primary production at depth, relative to the time series near Bermuda. These blooms are sustained by eddy/wind interactions, which amplify the eddy-induced upwelling. In contrast, eddy/wind interactions dampen eddy-induced upwelling in cyclones. Carbon export inferred from oxygen anomalies in eddy cores is one to three times as much as annual new production for the region.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2001

Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry

Deborah K. Steinberg; Craig A. Carlson; Nicholas R. Bates; Rodney J. Johnson; Anthony F. Michaels; Anthony H. Knap

The Bermuda Atlantic Time-series Study (BATS) commenced monthly sampling in October 1988 as part of the US Joint Global Ocean Flux Study (JGOFS) program. The goals of the US JGOFS time-series research are to better understand the basic processes that control ocean biogeochemistry on seasonal to decadal time-scales, determine the role of the oceans in the global carbon budget, and ultimately improve our ability to predict the effects of climate change on ecosystems. The BATS program samples the ocean on a biweekly to monthly basis, a strategy that resolves major seasonal patterns and interannual variability. The core cruises last 4-5 d during which hydrography, nutrients, particle flux, pigments and primary production, bacterioplankton abundance and production, and often complementary ancillary measurements are made. This overview focuses on patterns in ocean biology and biogeochemistry over a decade at the BATS site, concentrating on seasonal and interannual changes in community structure, and the physical forcing and other factors controlling the temporal dynamics. Significant seasonal and interannual variability in phytoplankton and bacterioplankton production, biomass, and community structure exists at BATS. No strong relationship exists between primary production and particle flux during the 10 yr record, with the relationship slightly improved by applying an artificial lag of 1 week between production and flux. The prokaryotic picoplankton regularly dominate the phytoplankton community; diatom blooms are rare but occur periodically in the BATS time series. The increase in Chi a concentrations during bloom periods is due to increases by most of the taxa present, rather than by any single group, and there is seasonal succession of phytoplankton. The bacterioplankton often dominate the living biomass, indicating the potential to consume large amounts of carbon and play a major ecological role within the microbial food web. Bacterial biomass, production, and specific growth rates are highest during summer. Size structure and composition of the plankton community may be an important factor controlling the quality of dissolved organic matter produced and could affect production of bacterioplankton biomass. Larger heterotrophic plankton play an integral role in the flux of material out of the euphotic zone at BATS. Protozoans are abundant and can constitute a sizable component of sinking flux. Zooplankton contribute significantly to flux via production of rapidly sinking fecal pellets, and vertically migrating zooplankton can actively transport a significant amount of dissolved organic and inorganic carbon and nitrogen to deep water. An important question that remains to be further addressed at BATS is how larger climatological events drive some of the interannual variability in the biogeochemistry


Deep-sea Research Part I-oceanographic Research Papers | 1994

Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic time-series study site

Anthony F. Michaels; Anthony H. Knap; Rachael L. Dow; Kjell Gundersen; Rodney J. Johnson; Jens C. Sorensen; A. Close; George A. Knauer; Steven E. Lohrenz; Vernon A. Asper; Merritt Tuel; Robert R. Bidigare

Seasonal patterns in hydrography, oxygen, nutrients, particulate carbon and nitrogen and pigments were measured on monthly cruises at the Bermuda Atlantic Time-series Study site, 80 km southeast of Bermuda. Between October 1988 and September 1990, the annual cycle was defined by the creation of 160–230 m-deep mixed layers in February of each year and a transition to strong thermal stratification in summer and fall. The 230 m mixed layer in February 1989 resulted in mixed-layer nitrate concentrations of 0.5–1.0 μmole kg−1, carbon fixation rates over 800 mg C m−2 day−1, and a phytoplankton bloom with chlorophyll concentrations over 0.4 mg m−3. Chlorophyll a, particulate organic matter, inorganic nutrients and primary production had returned to prebloom levels the following month with the exception of a chlorophyll maximum layer at 100 m. Particle fluxes at 150 m in February 1989 reached 56 mg C m−2 day−1 and 11 mg N m−2 day−1 (0.77 mmole N m−2 day−1). Estimates of new production during the bloom period calculated from changes in oxygen and nitrate profiles ranged from 100 to 240 mmoles N m−2, significantly higher than the sediment trap fluxes and approaching the measured total production rates. In spring of 1990, mixed layer depths did not exceed 160 m, nitrate was rarely detectable in the upper euphotic zone, chlorophyll a concentrations were similar to 1989, and particulate organic matter concentrations were lower. The period of elevated biomass lasted for 3 months in 1990, and phytoplankton pigment composition varied between cruises. The average rates of primary production and particle flux were higher in 1990 than those measured in the spring of 1989, despite the differences in mixed layer depth. Throughout both years, NO3 : PO4 ratios in the upper thermocline exceeded Redfield ratios. The maintenance of this pattern requires a net uptake of PO4 between 150 and 250 m, a depth range usually associated with net remineralization. The exact mechanism that maintains elevated PO4 uptake and its implication for the nutrient supply to the euphotic zone remain unknown.


Global Biogeochemical Cycles | 1993

Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms

Anthony F. Michaels; David A. Siegel; Rodney J. Johnson; Anthony H. Knap; James N. Galloway

Atmospheric wet deposition rates of nitrate and ammonia on Bermuda collected in the Atmosphere Ocean Chemistry Experiment (AEROCE) are compared with the synoptic measurements of carbon and nitrogen cycling from the U.S. Joint Global Ocean Flux Study (JGOFS) Bermuda Atlantic Time Series Study (BATS) station, 75 km southeast of Bermuda. Measurable deposition events were found on 23.8% of the days between October 1, 1988 and June 30, 1991. However, only a few of these events significantly contributed to the standing stocks of nitrogen and phytoplankton or rates of primary production. For 1.7% of the days each year, the atmospheric nitrogen deposition would have equaled the sinking particulate nitrogen flux as estimated by sediment traps. For only 0.2% of the time, would adequate nitrogen be deposited to a 20 m mixed layer to change the surface concentrations of particulate organic nitrogen by 10%. The results are dramatically different if all of the deposition remains confined to the upper l m of the water column enabling intense, surface phytoplankton blooms to occur. The occurrence of these near-surface blooms may be an important signal in the interpretation of satellite ocean color imagery, particularly when the satellite data are used to infer whole water-column phytoplankton stocks or productivity. Numerical simulations of the evolution of the near-surface mixed layer after a rainfall event indicate that low salinity surface waters would be mixed to the upper 10 m or so within 2-4 hours, except for wind speeds less than approximately 5m s−1. Thus, wet deposition induced surface algae blooms should only be observed under relatively calm meteorological conditions. In summary, wet deposition of nitrogen is a relatively unimportant process in affecting upper ocean nitrogen cycling for the Sargasso Sea off Bermuda, although in oceans with lower productivity and areas where deposition may increase with future industrial development, episodic deposition events may eventually have some short-term impacts on the local nitrogen cycle. To assess the total impact of atmospheric deposition of nitrogen will require additional information on dry deposition and the organic nitrogen content of rainwater.


Nature | 2002

A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean

Nicholas R. Bates; A. Christine Pequignet; Rodney J. Johnson; Nicolas Gruber

Large-scale features of ocean circulation, such as deep water formation in the northern North Atlantic Ocean, are known to regulate the long-term physical uptake of CO2 from the atmosphere by moving CO2-laden surface waters into the deep ocean. But the importance of CO2 uptake into water masses that ventilate shallower ocean depths, such as subtropical mode waters of the subtropical gyres, are poorly quantified. Here we report that, between 1988 and 2001, dissolved CO2 concentrations in subtropical mode waters of the North Atlantic have increased at a rate twice that expected from these waters keeping in equilibrium with increasing atmospheric CO2. This accounts for an extra ∼0.4–2.8 Pg C (1 Pg = 1015 g) over this period (that is, about 0.03–0.24 Pg C yr-1), equivalent to ∼3–10% of the current net annual ocean uptake of CO2 (ref. 3). We suggest that the lack of strong winter mixing events, to greater than 300 m in depth, in recent decades is responsible for this accumulation, which would otherwise disturb the mode water layer and liberate accumulated CO2 back to the atmosphere. However, future climate variability (which influences subtropical mode water formation) and changes in the North Atlantic Oscillation (leading to a return of deep winter mixing events) may reduce CO2 accumulation in subtropical mode waters. We therefore conclude that, although CO2 uptake by subtropical mode waters in the North Atlantic—and possibly elsewhere—does not always represent a long-term CO2 sink, the phenomenon is likely to contribute substantially to interannual variability in oceanic CO2 uptake.


Global Biogeochemical Cycles | 2012

Controls on dissolved cobalt in surface waters of the Sargasso Sea: Comparisons with iron and aluminum

Rachel U. Shelley; Peter N. Sedwick; Thomas S. Bibby; Patricia Cabedo-Sanz; Thomas M. Church; Rodney J. Johnson; Anna I. Macey; Chris M. Marsay; Edward R. Sholkovitz; Simon J. Ussher; Paul J. Worsfold; Maeve C. Lohan

Dissolved cobalt (dCo), iron (dFe) and aluminum (dAl) were determined in water column samples along a meridional transect (?31°N to 24°N) south of Bermuda in June 2008. A general north-to-south increase in surface concentrations of dFe (0.3–1.6 nM) and dAl (14–42 nM) was observed, suggesting that aerosol deposition is a significant source of dFe and dAl, whereas no clear trend was observed for near-surface dCo concentrations. Shipboard aerosol samples indicate fractional solubility values of 8–100% for aerosol Co, which are significantly higher than corresponding estimates of the solubility of aerosol Fe (0.44–45%). Hydrographic observations and analysis of time series rain samples from Bermuda indicate that wet deposition accounts for most (>80%) of the total aeolian flux of Co, and hence a significant proportion of the atmospheric input of dCo to our study region. Our aerosol data imply that the atmospheric input of dCo to the Sargasso Sea is modest, although this flux may be more significant in late summer. The water column dCo profiles reveal a vertical distribution that predominantly reflects ‘nutrient-type’ behavior, versus scavenged-type behavior for dAl, and a hybrid of nutrient- and scavenged-type behavior for dFe. Mesoscale eddies also appear to impact on the vertical distribution of dCo. The effects of biological removal of dCo from the upper water column were apparent as pronounced sub-surface minima (21 ± 4 pM dCo), coincident with maxima in Prochlorococcus abundance. These observations imply that Prochlorococcus plays a major role in removing dCo from the euphotic zone, and that the availability of dCo may regulate Prochlorococcus growth in the Sargasso Sea.


Frontiers in Marine Science | 2016

Comparing Chemistry and Census-Based Estimates of Net Ecosystem Calcification on a Rim Reef in Bermuda

Travis A. Courtney; Andreas J. Andersson; Nicholas R. Bates; Andrew Collins; Tyler Cyronak; Samantha J. de Putron; Bradley D. Eyre; Rebecca Garley; Eric J. Hochberg; Rodney J. Johnson; Sylvia Musielewicz; Tim Noyes; Christopher L. Sabine; Adrienne Sutton; Jessy Toncin; Aline Tribollet

Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs over recent decades primarily due to a combination of declining coral cover and changing benthic community composition. Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total alkalinity (TA) combined with residence time to calculate an instantaneous measurement of NEC. Census-based approaches combine annual growth rates with benthic cover and reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC techniques to compare the mass-balance generated by the two methods and identify the dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the annual 2011 census-based NEC 2.35±1.01 kg CaCO3•m-2•y-1 and the chemistry-based NEC 2.23±1.02 kg CaCO3•m-2•y-1 at Hog Reef. An additional record of Hog Reef TA data calculated from an autonomous CO2 mooring measuring pCO2 and modeled pHtotal every 3-hours highlights the dynamic temporal variability in coral reef NEC. This ability for chemistry-based NEC techniques to capture higher frequency variability in coral reef NEC allows the mechanisms driving NEC variability to be explored and tested. Just four coral species, Diploria labyrinthiformis, Pseudodiploria strigosa, Millepora alcicornis, and Orbicella franksi, were identified by the census-based NEC as contributing to 94±19% of the total calcium carbonate production at Hog Reef suggesting these species should be highlighted for conservation to preserve current calcium carbonate production rates at Hog Reef. As coral cover continues to decline globally, the agreement between these NEC estimates suggest that either method, but ideally both methods, may serve as a useful tool for coral reef managers and conservation scientists to monitor the maintenance of coral reef structure and ecosystem services.


Journal of Geophysical Research | 2008

Tracer‐based assessment of the origin and biogeochemical transformation of a cyclonic eddy in the Sargasso Sea

Qian P. Li; Dennis A. Hansell; Dennis J. McGillicuddy; Nicholas R. Bates; Rodney J. Johnson

of export was 0.5 ± 0.34 mol N m � 2 via sinking particles, with export occurring prior to our period of direct observation. Our results suggest that biogeochemical signals induced by mesoscale eddies could survive to be transported over long distances, thus providing a mechanism for lateral fluxes of nutrients and AOU (apparent oxygen utilization). Given that the proposed source area of this eddy is relatively broad, and the eddy-mixing history before our sampling is unknown, uncertainty remains in our assessment of the true biogeochemical impact of mesoscale eddies in the gyre.


Archive | 2013

Threats to coral reefs of Bermuda

Struan R. Smith; Samia Sarkis; Thad J. T. Murdoch; Ernesto Weil; Aldo Cróquer; Nicholas R. Bates; Rodney J. Johnson; Samantha J. de Putron; Andreas J. Andersson

Bermuda’s reefs have endured the impact of 400 years of human settlement and resource extraction. Although the reef system has benefited from pro-active regulation and control of fishing and pollution since the twentieth century, the nearshore environment and lagoon reefs are threatened by ongoing and planned activities. Coastal development, including cruise ship ports, marinas and shipping channel expansion are significant potential threats through reef removal and sedimentation. The dense human population on Bermuda has produced chronic chemical and nutrient pollution in nearshore bays and harbours. Sewage has reduced water quality in some enclosed bays but is generally not a major threat. Coral bleaching has occurred repeatedly since the 1980s, in response to elevated seawater temperatures, but these events have not resulted in significant mortality. Corals diseases are prevalent at low levels of infection in a large number of species but do not appear to have caused significant mortality. The invasive lionfish (Pterios volitans) is present and the population is growing but culling and harvesting efforts are conducted. There is great concern for the potential impacts of climate-related changes, in particular ocean acidification. Bermuda’s corals grow at reduced rates compared with Caribbean conspecifics and there is evidence that some corals are already growing slower, under the current condition of declining aragonite saturation state in reef waters. The potential for reduced coral and reef growth, in combination with rising sea level, may compromise the effectiveness of the reef as a natural barrier to storm waves, resulting in greater coastal erosion.


Global Biogeochemical Cycles | 2005

Iron in the sargasso sea (Bermuda Atlantic Time-series Study region) during summer: Eolian imprint, spatiotemporal variability, and ecological implications

Peter N. Sedwick; Thomas M. Church; Andrew R. Bowie; Christopher M. Marsay; Simon J. Ussher; Katherine M. Achilles; Paul Lethaby; Rodney J. Johnson; M. M. Sarin; Dennis J. McGillicuddy

Collaboration


Dive into the Rodney J. Johnson's collaboration.

Top Co-Authors

Avatar

Nicholas R. Bates

Bermuda Institute of Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar

Anthony F. Michaels

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Deborah K. Steinberg

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Dennis J. McGillicuddy

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Ken O. Buesseler

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Peters

Bermuda Institute of Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge