Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodney Russ is active.

Publication


Featured researches published by Rodney Russ.


Laboratory Investigation | 2009

Tenofovir renal toxicity targets mitochondria of renal proximal tubules

James J. Kohler; Seyed H. Hosseini; Amy Hoying-Brandt; Elgin Green; David M. Johnson; Rodney Russ; Dung Tran; C Michael Raper; Robert Santoianni; William Lewis

Tenofovir disoproxil fumarate (TDF) is an analog of adenosine monophosphate that inhibits HIV reverse transcriptase in HIV/AIDS. Despite its therapeutic success, renal tubular side effects are reported. The mechanisms and targets of tenofovir toxicity were determined using ‘2 × 2’ factorial protocols, and HIV transgenic (TG) and wild-type (WT) littermate mice with or without TDF (5 weeks). A parallel study used didanosine (ddI) instead of TDF. At termination, heart, kidney, and liver samples were retrieved. Mitochondrial DNA (mtDNA) abundance, and histo- and ultrastructural pathology were analyzed. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. Tenofovir increased mtDNA abundance in TG whole kidneys, but not in their hearts or livers. In contrast, ddI decreased mtDNA abundance in the livers of WTs and TGs, but had no effect on their hearts or kidneys. Histological analyses of kidneys showed no disruption of glomeruli or proximal tubules with TDF or ddI treatments. Ultrastructural changes in renal proximal tubules from TDF-treated TGs included an increased number and irregular shape of mitochondria with sparse fragmented cristae. LCM-captured renal proximal tubules from TGs showed decreased mtDNA abundance with tenofovir. The results indicate that tenofovir targets mitochondrial toxicity on the renal proximal tubule in an AIDS model.


AIDS | 2006

Antiretroviral nucleosides, deoxynucleotide carrier and mitochondrial DNA: evidence supporting the DNA pol γ hypothesis

William Lewis; James J. Kohler; Seyed H. Hosseini; Chad P. Haase; William C. Copeland; Rachelle J. Bienstock; Tomika Ludaway; Jamie McNaught; Rodney Russ; Tami Stuart; Robert Santoianni

Design:Nucleoside reverse transcriptase inhibitors (NRTIs) exhibit mitochondrial toxicity. The mitochondrial deoxynucleotide carrier (DNC) transports nucleotide precursors (or phosphorylated NRTIs) into mitochondria for mitochondrial (mt)DNA replication or inhibition of mtDNA replication by NRTIs. Transgenic mice (TG) expressing human DNC targeted to murine myocardium served to define mitochondrial events from NRTIs in vivo and findings were corroborated by biochemical events in vitro. Methods:Zidovudine (3′-azido-2′,3′-deoxythymidine; ZDV), stavudine (2′, 3′-didehydro-2′, 3′-deoxythymidine; d4T), or lamivudine ((−)-2′-deoxy-3′-thiacytidine; 3TC) were administered individually to TGs and wild-type (WT) littermates (35 days) at human doses with drug-free vehicle as control. Left ventricle (LV) mass was defined echocardiographically, mitochondrial ultrastructural defects were identified by electron microscopy, the abundance of cardiac mtDNA was quantified by real time polymerase chain reaction, and mtDNA-encoded polypeptides were quantified. Results:Untreated TGs exhibited normal LV mass with minor mitochondrial damage. NRTI monotherapy (either d4T or ZDV) increased LV mass in TGs and caused significant mitochondrial destruction. Cardiac mtDNA was depleted in ZDV and d4T-treated TG hearts and mtDNA-encoded polypeptides decreased. Changes were absent in 3TC-treated cohorts. In supportive structural observations from molecular modeling, ZDV demonstrated close contacts with K947 and Y951 in the DNA pol γ active site that were absent in the HIV reverse transcriptase active site. Conclusions:NRTIs deplete mtDNA and polypeptides, cause mitochondrial structural and functional defects in vivo, follow inhibition kinetics with DNA pol γ in vitro, and are corroborated by molecular models. Disrupted pools of nucleotide precursors and inhibition of DNA pol γ by specific NRTIs are mechanistically important in mitochondrial toxicity.


Laboratory Investigation | 2007

DECREASED mtDNA, OXIDATIVE STRESS, CARDIOMYOPATHY, AND DEATH FROM TRANSGENIC CARDIAC TARGETED HUMAN MUTANT POLYMERASE γ *

William Lewis; Brian J. Day; James J. Kohler; Seyed H. Hosseini; Sherine S.L. Chan; Elgin Green; Chad P. Haase; Erin S. Keebaugh; Robert Long; Tomika Ludaway; Rodney Russ; Jeffrey Steltzer; Nina Tioleco; Robert Santoianni; William C. Copeland

POLG is the human gene that encodes the catalytic subunit of DNA polymerase γ (Pol γ), the replicase for human mitochondrial DNA (mtDNA). A POLG Y955C point mutation causes human chronic progressive external ophthalmoplegia (CPEO), a mitochondrial disease with eye muscle weakness and mtDNA defects. Y955C POLG was targeted transgenically (TG) to the murine heart. Survival was determined in four TG (+/−) lines and wild-type (WT) littermates (−/−). Left ventricle (LV) performance (echocardiography and MRI), heart rate (electrocardiography), mtDNA abundance (real time PCR), oxidation of mtDNA (8-OHdG), histopathology and electron microscopy defined the phenotype. Cardiac targeted Y955C POLG yielded a molecular signature of CPEO in the heart with cardiomyopathy (CM), mitochondrial oxidative stress, and premature death. Increased LV cavity size and LV mass, bradycardia, decreased mtDNA, increased 8-OHdG, and cardiac histopathological and mitochondrial EM defects supported and defined the phenotype. This study underscores the pathogenetic role of human mutant POLG and its gene product in mtDNA depletion, mitochondrial oxidative stress, and CM as it relates to the genetic defect in CPEO. The transgenic model pathophysiologically links human mutant Pol γ, mtDNA depletion, and mitochondrial oxidative stress to the mtDNA replication apparatus and to CM.


Laboratory Investigation | 2011

Tenofovir renal proximal tubular toxicity is regulated By OAT1 and MRP4 transporters

James J. Kohler; Seyed H. Hosseini; Elgin Green; Allison Abuin; Tomika Ludaway; Rodney Russ; Robert Santoianni; William Lewis

Tenofovir disoproxil fumarate (TDF) is an oral prodrug and acyclic nucleotide analog of adenosine monophosphate that inhibits HIV-1 (HIV) reverse transcriptase. A growing subset of TDF-treated HIV+ individuals presented with acute renal failure, suggesting tenofovir-associated kidney-specific toxicity. Our previous studies using an HIV transgenic mouse model (TG) demonstrated specific changes in renal proximal tubular mitochondrial DNA (mtDNA) abundance. Nucleosides are regulated in biological systems via transport and metabolism in cellular compartments. In this study, the role(s) of organic anion transporter type 1 (OAT1) and multidrug-resistant protein type 4 (MRP4) in transport and regulation of tenofovir in proximal tubules were assessed. Renal toxicity was assessed in kidney tissues from OAT1 knockout (KO) or MRP4 KO compared with wild-type (WT, C57BL/6) mice following treatment with TDF (0.11 mg/day), didanosine (ddI, a related adenosine analog, 0.14 mg/day) or vehicle (0.1 M NaOH) daily gavage for 5 weeks. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. mtDNA abundance and ultrastructural pathology were analyzed. mtDNA abundance in whole kidneys from both KO and WT was unchanged regardless of treatment. Renal proximal tubular mtDNA abundance from OAT1 KO also remained unchanged, suggesting prevention of TDF toxicity due to loss of tenofovir transport into proximal tubules. In contrast, renal proximal tubules from MRP4 KO exhibited increased mtDNA abundance following TDF treatment compared with WT littermates, suggesting compensation. Renal proximal tubules from TDF-treated WT and MRP4 KO exhibited increased numbers of irregular mitochondria with sparse, fragmented cristae compared with OAT1 KO. Treatment with ddI had a compensatory effect on mtDNA abundance in OAT1 KO but not in MRP4 KO. Both OAT1 and MRP4 have a direct role in transport and efflux of tenofovir, regulating levels of tenofovir in proximal tubules. Disruption of OAT1 activity prevents tenofovir toxicity but loss of MRP4 can lead to increased renal proximal tubular toxicity. These data help to explain mechanisms of human TDF renal toxicity.


Laboratory Investigation | 2001

Combined antiretroviral therapy causes cardiomyopathy and elevates plasma lactate in transgenic AIDS mice

William Lewis; Chad P. Haase; Scott Raidel; Rodney Russ; Roy L. Sutliff; Brian D. Hoit; Allen M. Samarel

Highly active antiretroviral therapy (HAART) is implicated in cardiomyopathy (CM) and in elevated plasma lactate (LA) in AIDS through mechanisms of mitochondrial dysfunction. To determine mitochondrial events from HAART in vivo, 8-week-old hemizygous transgenic AIDS mice (NL4–3Δ gag/pol; TG) and wild-type FVB/n littermates were treated with the HAART combination of zidovudine, lamivudine, and indinavir or vehicle control for 10 days or 35 days. At termination of the experiments, mice underwent echocardiography, quantitation of abundance of molecular markers of CM (ventricular mRNA encoding atrial natriuretic factor [ANF] and sarcoplasmic calcium ATPase [SERCA2]), and determination of plasma LA. Myocardial histologic features were analyzed semiquantitatively and results were confirmed by transmission electron microscopy. After 35 days in the TG + HAART cohort, left ventricular mass increased 160% by echocardiography. Molecularly, ANF mRNA increased 250% and SERCA2 mRNA decreased 57%. Biochemically, LA was elevated (8.5 ± 2.0 mm). Pathologically, granular cytoplasmic changes were found in cardiac myocytes, indicating enlarged, damaged mitochondria. Findings were confirmed ultrastructurally. No changes were found in other cohorts. After 10 days, only ANF was elevated, and only in the TG + HAART cohort. Results show that cumulative HAART caused mitochondrial CM with elevated LA in AIDS transgenic mice.


Laboratory Investigation | 2009

Transgenic mitochondrial superoxide dismutase and mitochondrially targeted catalase prevent antiretroviral-induced oxidative stress and cardiomyopathy

James J. Kohler; Ioan Cucoranu; Earl Fields; Elgin Green; Stanley He; Amy Hoying; Rodney Russ; Allison Abuin; David M. Johnson; Seyed H. Hosseini; C Michael Raper; William Lewis

Transgenic mice (TG) were used to define mitochondrial oxidative stress and cardiomyopathy (CM) induced by zidovudine (AZT), an antiretroviral used to treat HIV/AIDS. Genetically engineered mice either depleted or overexpressed mitochondrial superoxide dismutase (SOD2+/− KOs and SOD2-OX, respectively) or expressed mitochondrially targeted catalase (mCAT). TGs and wild-type (WT) littermates were treated (oral AZT, 35 days). Cardiac mitochondrial H2O2, aconitase activity, histology and ultrastructure were analyzed. Left ventricle (LV) mass and LV end-diastolic dimension were determined echocardiographically. AZT induced cardiac oxidative stress and LV dysfunction in WTs. Cardiac mitochondrial H2O2 increased and aconitase was inactivated in SOD2+/− KOs, and cardiac dysfunction was worsened by AZT. Conversely, the cardiac function in SOD2-OX and mCAT hearts was protected. In SOD2-OX and mCAT TG hearts, mitochondrial H2O2, LV mass and LV cavity volume resembled corresponding values from vehicle-treated WTs. AZT worsens cardiac dysfunction and increases mitochondrial H2O2 in SOD2+/− KO. Conversely, both SOD2-OX and mCAT TGs prevent or attenuate AZT-induced cardiac oxidative stress and LV dysfunction. As dysfunctional changes are ameliorated by decreasing and worsened by increasing H2O2 abundance, oxidative stress from H2O2 is crucial pathogenetically in AZT-induced mitochondrial CM.


Laboratory Investigation | 2005

Transgenic expression of the deoxynucleotide carrier causes mitochondrial damage that is enhanced by NRTIs for AIDS

William Lewis; Chad P. Haase; Yoon K. Miller; Brandy Ferguson; Tami Stuart; Tomika Ludaway; Jamie McNaught; Rodney Russ; Jeffrey Steltzer; Robert Santoianni; Robert Long; Giuseppe Fiermonte; Ferdinando Palmieri

Nucleoside reverse transcriptase inhibitors (NRTIs) are antiretrovirals for AIDS with limiting mitochondrial side effects. The mitochondrial deoxynucleotide carrier (DNC) transports phosphorylated nucleosides for mitochondrial DNA replication and can transport phosphorylated NRTIs into mitochondria. Transgenic mice (TG) that exclusively overexpress DNC in the heart tested DNCs role in mitochondrial dysfunction from NRTIs. Two TG lines were created that overexpressed the human DNC gene in murine myocardium. Cardiac and mitochondrial structure and function were examined by magnetic resonance imaging, echocardiography, electrocardiography, transmission electron microscopy, and plasma lactate. Antiretroviral combinations (HAART) that contained NRTIs (stavudine (2′, 3′-didehydro-2′, 3′-deoxythymidine or d4T)/lamivudine/indinavir; or zidovudine (3′ azido-3′-deoxythymidine or AZT)/lamivudine/indinavir; 35 days) were administered to simulate AIDS therapy. In parallel, a HAART combination without NRTIs (nevirapine/efavirenz/indinavir; 35 days) served as an NRTI-sparing, control regimen. Untreated DNC TGs exhibited normal cardiac function but abnormal mitochondrial ultrastructure. HAART that contained NRTIs caused cardiomyopathy in TGs with increased left ventricle mass and volume, heart rate variability, and worse mitochondrial ultrastructural defects. In contrast, treatment with an NRTI-sparing HAART regimen caused no cardiac changes. Data suggest the DNC is integral to mitochondrial homeostasis in vivo and may relate mechanistically to mitochondrial dysfunction in patients treated with HAART regimens that contain NRTIs.


Laboratory Investigation | 2005

HIV viral protein R causes atrial cardiomyocyte mitosis, mesenchymal tumor, dysrhythmia, and heart failure

William Lewis; Yoon K. Miller; Chad P. Haase; Tomika Ludaway; Jamie McNaught; Rodney Russ; Jeffrey Steltzer; Andrew L. Folpe; Robert Long; John N. Oshinski

HIV viral protein R (Vpr) affects the immunocyte cell cycle and circulates as free polypeptide in plasma of AIDS patients. Effects of Vpr on cardiomyocytes were explored using transgenic mice (TG) with Vpr targeted to cardiomyocytes by the α-myosin heavy-chain promoter. TG and WT littermate hearts were evaluated histopathologically, ultrastructurally, molecularly via RNA microarray analysis and quantitative RT-PCR, and functionally by cardiac magnetic resonance imaging (MRI) and electrocardiograms (ECG). Six hemizygous lines were created (Vpra,b,c,d,e,h). Vpr RNA was expressed exclusively in myocardium and Vpr mRNA expression correlated with phenotypic changes. Vprb exhibited the highest expression and mortality. TGs developed congestive heart failure (≈8 weeks), abnormal cardiomyocyte nuclei and mitoses (≈12 weeks), and became moribund (≈20 weeks) with atrial mesenchymal tumors. MRI revealed four-chamber dilation, defective contraction, and atrial masses. Pathologically, cardiomegaly and atrial mesenchymal tumors occurred (≈16–20 weeks). ECGs showed prolonged R–R, Q–T, and P–R intervals (≈12 weeks). RNA encoding collagen and bone morphogenic protein 4, 6, and 7 were increased. Vpr targeted to cardiomyocytes caused defective contractility and atrial tumors. Since some Vpr cardiomyocytic effects resemble those found in terminally differentiated immunocytes, some pathogenetic mechanisms may be shared at the subcellular level.


Laboratory Investigation | 2009

Murine cardiac mtDNA: effects of transgenic manipulation of nucleoside phosphorylation

James J. Kohler; Seyed H. Hosseini; Ioan Cucoranu; Amy Hoying-Brandt; Elgin Green; David M. Johnson; Bree Wittich; Jaya Srivastava; Kristopher Ivey; Earl Fields; Rodney Russ; C Michael Raper; Robert Santoianni; William Lewis

Mitochondrial toxicity results from pyrimidine nucleoside reverse transcriptase inhibitors (NRTIs) for HIV/AIDS. In the heart, this can deplete mitochondrial (mt) DNA and cause cardiac dysfunction (eg, left ventricle hypertrophy, LVH). Four unique transgenic, cardiac-targeted overexpressors (TGs) were generated to determine their individual impact on native mitochondrial biogenesis and effects of NRTI administration on development of mitochondrial toxicity. TGs included cardiac-specific overexpression of native thymidine kinase 2 (TK2), two pathogenic TK2 mutants (H121N and I212N), and a mutant of mtDNA polymerase, pol-γ (Y955C). Each was treated with antiretrovirals (AZT-HAART, 3 or 10 weeks, zidovudine (AZT) + lamivudine (3TC) + indinavir, or vehicle control). Parameters included left ventricle (LV) performance (echocardiography), LV mtDNA abundance (real-time PCR), and mitochondrial fine structure (electron microscopy, EM) as a function of duration of treatment and presence of TG. mtDNA abundance significantly decreased in Y955C TG, increased in TK2 native and I212N TGs, and was unchanged in H121N TGs at 10 weeks regardless of treatment. Y955C and I212N TGs exhibited LVH during growth irrespective of treatment. Y955C TGs exhibited cardiomyopathy (CM) at 3 and 10 weeks irrespective of treatment, whereas H121N and I212N TGs exhibited CM only after 10 weeks AZT-HAART. EM features were consistent with cardiac dysfunction. mtDNA abundance and cardiac functional changes were related to TG expression of mitochondrially related genes, mutations thereof, and NRTIs.


Physiological Genomics | 2015

AZT-induced mitochondrial toxicity: an epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress.

Christopher A. Koczor; Zhe Jiao; Earl Fields; Rodney Russ; Tomika Ludaway; William Lewis

Mitochondrial dysfunction causes oxidative stress and cardiomyopathy. Oxidative stress also is a side effect of dideoxynucleoside antiretrovirals (NRTI) and is observed in NRTI-induced cardiomyopathy. We show here that treatment with the NRTI AZT {1-[(2R,4S,5S)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione} modulates cardiac gene expression epigenetically through production of mitochondrially derived reactive oxygen species. Transgenic mice with ubiquitous expression of mitochondrially targeted catalase (MCAT) and C57Bl/6 wild-type mice littermates (WT) were administered AZT (0.22 mg/day po, 35 days), and cardiac DNA and mRNA were isolated. In AZT-treated WT, 95 cardiac genes were differentially expressed compared with vehicle-treated WTs. When MCAT mice were treated with AZT, each of those 95 genes reverted toward the expression of vehicle-treated WTs. In AZT-treated WT hearts, Mthfr [5,10-methylenetetrahydrofolate reductase; a critical enzyme in synthesis of methionine cycle intermediates including S-adenosylmethionine (SAM)], was overexpressed. Steady-state abundance of SAM in cardiac extracts from AZT-treated MCAT mice increased 60% above that of vehicle-treated MCAT. No such change occurred in WT. AZT caused hypermethylation (47%) and hypomethylation (53%) of differentially methylated DNA regions in WT cardiac DNA. AZT-treated MCAT heart DNA exhibited greater hypermethylation (91%) and less hypomethylation (9%) compared with vehicle-treated MCAT controls. The gene encoding protein kinase C-α displayed multifocal epigenetic regulation caused by oxidative stress. Results show that mitochondrially derived oxidative stress in the heart hinders cardiac DNA methylation, alters steady-state abundance of SAM, alters cardiac gene expression, and promotes characteristic pathophysiological changes of cardiomyopathy. This mechanism for NRTI toxicity offers insight into long-term side effects from these commonly used antiviral agents.

Collaboration


Dive into the Rodney Russ's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge