Rodney W. Kirk
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodney W. Kirk.
Optics Letters | 2011
Dirk Lorenser; Xiaojie Yang; Rodney W. Kirk; Bryden C. Quirk; Robert A. McLaughlin; David D. Sampson
We present the smallest reported side-viewing needle probe for optical coherence tomography (OCT). Design, fabrication, optical characterization, and initial application of a 30-gauge (outer diameter 0.31 mm) needle probe are demonstrated. Extreme miniaturization is achieved by using a simple all-fiber probe design incorporating an angle-polished and reflection-coated fiber-tip beam deflector. When inserted into biological tissue, aqueous interstitial fluids reduce the probes inherent astigmatism ratio to 1.8, resulting in a working distance of 300 μm and a depth-of-field of 550 μm with beam diameters below 30 μm. The needle probe was interfaced with an 840 nm spectral-domain OCT system and the measured sensitivity was shown to be only 7 dB lower than that of a comparable galvo-scanning sample arm configuration. 3D OCT images of lamb lungs were acquired over a depth range of ~600 μm, showing individual alveoli and bronchioles.
IEEE Journal of Selected Topics in Quantum Electronics | 2012
Robert A. McLaughlin; Bryden C. Quirk; Andrea Curatolo; Rodney W. Kirk; Loretta Scolaro; Dirk Lorenser; Peter Robbins; Benjamin A. Wood; Christobel Saunders; David D. Sampson
Optical coherence tomography (OCT) is a high-resolution imaging modality with the potential to provide in situ assessment to distinguish normal from cancerous tissue. However, limited image penetration depth has restricted its utility. This paper demonstrates the feasibility of an OCT needle probe to perform interstitial imaging deep below the tissue surface. The side-facing needle probe comprises miniaturized focusing optics consisting of no-core and GRIN fiber encased within either a 22- or 23-gauge needle. 3-D OCT volumetric data sets were acquired by rotating and retracting the probe during imaging. We present the first published image of a human breast cancer tumor margin, and of human axillary lymph nodes acquired with an OCT needle probe. Through accurate correlation with the histological gold standard, OCT is shown to enable a clear delineation of tumor boundary from surrounding adipose tissue, and identification of microarchitectural features.
Journal of Biomedical Optics | 2011
Bryden C. Quirk; Robert A. McLaughlin; Andrea Curatolo; Rodney W. Kirk; Peter B. Noble; David D. Sampson
In situ imaging of alveoli and the smaller airways with optical coherence tomography (OCT) has significant potential in the assessment of lung disease. We present a minimally invasive imaging technique utilizing an OCT needle probe. The side-facing needle probe comprises miniaturized focusing optics consisting of no-core and GRIN fiber encased within a 23-gauge needle. 3D-OCT volumetric data sets were acquired by rotating and retracting the probe during imaging. The probe was used to image an intact, fresh (not fixed) sheep lung filled with normal saline, and the results validated against a histological gold standard. We present the first published images of alveoli acquired with an OCT needle probe and demonstrate the potential of this technique to visualize other anatomical features such as bifurcations of the bronchioles.
Optics Letters | 2013
Dirk Lorenser; Bryden C. Quirk; Mathieu Auger; Wendy-Julie Madore; Rodney W. Kirk; Nicolas Godbout; David D. Sampson; Caroline Boudoux; Robert A. McLaughlin
To the best of our knowledge, we present the first needle probe for combined optical coherence tomography (OCT), and fluorescence imaging. The probe uses double-clad fiber (DCF) that guides the OCT signal and fluorescence excitation light in the core and collects and guides the returning fluorescence in the large-diameter multimode inner cladding. It is interfaced to a 1310 nm swept-source OCT system that has been modified to enable simultaneous 488 nm fluorescence excitation and >500 nm emission detection by using a DCF coupler to extract the returning fluorescence signal in the inner cladding with high efficiency. We present imaging results from an excised sheep lung with fluorescein solution infused through the vasculature. We were able to identify alveoli, bronchioles, and blood vessels. The results demonstrate that the combined OCT plus fluorescence needle images provide improved tissue differentiation over OCT alone.
Journal of Applied Physiology | 2012
Robert A. McLaughlin; Xiaojie Yang; Bryden C. Quirk; Dirk Lorenser; Rodney W. Kirk; Peter B. Noble; David D. Sampson
Imaging of alveoli in situ has for the most part been infeasible due to the high resolution required to discern individual alveoli and limited access to alveoli beneath the lung surface. In this study, we present a novel technique to image alveoli using optical coherence tomography (OCT). We propose the use of OCT needle probes, where the distal imaging probe has been miniaturized and encased within a hypodermic needle (as small as 30-gauge, outer diameter 310 μm), allowing insertion deep within the lung tissue with minimal tissue distortion. Such probes enable imaging at a resolution of ∼12 μm within a three-dimensional cylindrical field of view with diameter ∼1.5 mm centered on the needle tip. The imaging technique is demonstrated on excised lungs from three different species: adult rats, fetal sheep, and adult pigs. OCT needle probes were used to image alveoli, small bronchioles, and blood vessels, and results were matched to histological sections. We also present the first dynamic OCT images acquired with an OCT needle probe, allowing tracking of individual alveoli during simulated cyclical lung inflation and deflation.
Scientific Reports | 2016
Martin Villiger; Dirk Lorenser; Robert A. McLaughlin; Bryden C. Quirk; Rodney W. Kirk; Brett E. Bouma; David D. Sampson
Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins.
Biomedical Optics Express | 2014
Xiaojie Yang; Dirk Lorenser; Robert A. McLaughlin; Rodney W. Kirk; Matthew Edmond; M. Cather Simpson; Miranda D. Grounds; David D. Sampson
We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ.
American Journal of Roentgenology | 2012
Andrea Curatolo; Robert A. McLaughlin; Bryden C. Quirk; Rodney W. Kirk; Anita G. Bourke; Benjamin A. Wood; Peter Robbins; Christobel Saunders; David D. Sampson
OBJECTIVE The purpose of this study was to evaluate a new imaging technique for the assessment of breast cancer tumor margins. The technique entails deployment of a high-resolution optical imaging needle under ultrasound guidance. Assessment was performed on fresh ex vivo tissue samples. CONCLUSION Use of the ultrasound-guided optical needle probe allowed in situ assessment of fresh tissue margins. The imaging findings corresponded to the histologic findings.
Optics Express | 2010
Brandon Lau; Robert A. McLaughlin; Andrea Curatolo; Rodney W. Kirk; Derek Gerstmann; David D. Sampson
Endoscopic imaging using optical coherence tomography (OCT) has been demonstrated as clinically useful in the assessment of human airways. These airways have a complex 3D structure, bending, tapering and bifurcating. Previously published 3D OCT reconstructions have not accounted for changes in the orientation and trajectory of the endoscopic probe as it moves through the airway during imaging. We propose a novel endoscopic setup incorporating a magnetic tracking system that accounts for these changes, yielding reconstructions that reveal the true 3D nature of the imaged anatomy. We characterize the accuracy of the system, and present the first published magnetic tracker-assisted endoscopic OCT reconstructions using a phantom airway.
Biomedical Optics Express | 2016
Wes M. Allen; Lixin Chin; Philip Wijesinghe; Rodney W. Kirk; Bruce Latham; David D. Sampson; Christobel Saunders; Brendan F. Kennedy
Incomplete excision of malignant tissue is a major issue in breast-conserving surgery, with typically 20 - 30% of cases requiring a second surgical procedure arising from postoperative detection of an involved margin. We report advances in the development of a new intraoperative tool, optical coherence micro-elastography, for the assessment of tumor margins on the micro-scale. We demonstrate an important step by conducting whole specimen imaging in intraoperative time frames with a wide-field scanning system acquiring mosaicked elastograms with overall dimensions of ~50 × 50 mm, large enough to image an entire face of most lumpectomy specimens. This capability is enabled by a wide-aperture annular actuator with an internal diameter of 65 mm. We demonstrate feasibility by presenting elastograms recorded from freshly excised human breast tissue, including from a mastectomy, lumpectomies and a cavity shaving.