Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodolfo Costa is active.

Publication


Featured researches published by Rodolfo Costa.


Science | 2007

Natural Selection Favors a Newly Derived timeless Allele in Drosophila melanogaster

Eran Tauber; Mauro Agostino Zordan; Federica Sandrelli; Mirko Pegoraro; Nicolò Osterwalder; Carlo Breda; Andrea Daga; Alessandro Selmin; Karen Monger; Clara Benna; Ezio Rosato; Charalambos P. Kyriacou; Rodolfo Costa

Circadian and other natural clock-like endogenous rhythms may have evolved to anticipate regular temporal changes in the environment. We report that a mutation in the circadian clock gene timeless in Drosophila melanogaster has arisen and spread by natural selection relatively recently in Europe. We found that, when introduced into different genetic backgrounds, natural and artificial alleles of the timeless gene affect the incidence of diapause in response to changes in light and temperature. The natural mutant allele alters an important life history trait that may enhance the flys adaptation to seasonal conditions.


Nature | 2012

Unexpected features of Drosophila circadian behavioural rhythms under natural conditions

Stefano Vanin; Supriya Bhutani; Stefano Montelli; Pamela Menegazzi; Edward W. Green; Mirko Pegoraro; Federica Sandrelli; Rodolfo Costa; Charalambos P. Kyriacou

Circadian clocks have evolved to synchronize physiology, metabolism and behaviour to the 24-h geophysical cycles of the Earth. Drosophila melanogaster’s rhythmic locomotor behaviour provides the main phenotype for the identification of higher eukaryotic clock genes. Under laboratory light–dark cycles, flies show enhanced activity before lights on and off signals, and these anticipatory responses have defined the neuronal sites of the corresponding morning (M) and evening (E) oscillators. However, the natural environment provides much richer cycling environmental stimuli than the laboratory, so we sought to examine fly locomotor rhythms in the wild. Here we show that several key laboratory-based assumptions about circadian behaviour are not supported by natural observations. These include the anticipation of light transitions, the midday ‘siesta’, the fly’s crepuscular activity, its nocturnal behaviour under moonlight, and the dominance of light stimuli over temperature. We also observe a third major locomotor component in addition to M and E, which we term ‘A’ (afternoon). Furthermore, we show that these natural rhythm phenotypes can be observed in the laboratory by using realistic temperature and light cycle simulations. Our results suggest that a comprehensive re-examination of circadian behaviour and its molecular readouts under simulated natural conditions will provide a more authentic interpretation of the adaptive significance of this important rhythmic phenotype. Such studies should also help to clarify the underlying molecular and neuroanatomical substrates of the clock under natural protocols.


Proceedings of the Royal Society of London B: Biological Sciences | 1992

A latitudinal cline in a Drosophila clock gene

Rodolfo Costa; Alexandre A. Peixoto; Guido Barbujani; Charalambos P. Kyriacou

The clock gene period determines biological rhythmicity in Drosophila melanogaster and encodes a protein characterized by an alternating series of threonine-glycine pairs. The minisatellite region encoding the threonine-glycine repeat is polymorphic in length in natural Drosophila melanogaster populations. In this paper we report the geographical analysis of this polymorphism within Europe and North Africa. A robust clinal pattern is observed along a north-south axis. We suggest the possibility that the length polymorphism could be maintained by thermal selection because the threonine-glycine region has been shown to provide thermostability to the circadian phenotype.


Current Biology | 2001

Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY

Ezio Rosato; Veryan Codd; Gabriella Mazzotta; Alberto Piccin; Mauro Agostino Zordan; Rodolfo Costa; Charalambos P. Kyriacou

BACKGROUND The biological clock synchronizes the organism with the environment, responding to changes in light and temperature. Drosophila CRYPTOCHROME (CRY), a putative circadian photoreceptor, has previously been reported to interact with the clock protein TIMELESS (TIM) in a light-dependent manner. Although TIM dimerizes with PERIOD (PER), no association between CRY and PER has previously been revealed, and aspects of the light dependence of the TIM/CRY interaction are still unclear. RESULTS Behavioral analysis of double mutants of per and cry suggested a genetic interaction between the two loci. To investigate whether this was reflected in a physical interaction, we employed a yeast-two-hybrid system that revealed a dimerization between PER and CRY. This was further supported by a coimmunoprecipitation assay in tissue culture cells. We also show that the light-dependent nuclear interactions of PER and TIM with CRY require the C terminus of CRY and may involve a trans-acting repressor. CONCLUSIONS This study shows that, as in mammals, Drosophila CRY interacts with PER, and, as in plants, the C terminus of CRY is involved in mediating light responses. A model for the light dependence of CRY is discussed.


Journal of Hypertension | 2006

Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II.

Andrea Semplicini; Livia Lenzini; Michelangelo Sartori; Italia Papparella; Lorenzo A. Calò; Elisa Pagnin; Giacomo Strapazzon; Clara Benna; Rodolfo Costa; Angelo Avogaro; Giulio Ceolotto; Achille C. Pessina

Context RGS2 (regulators of G-protein signaling) is a negative regulator of Gαq protein signaling, which mediates the action of several vasoconstrictors. RGS2-deficient mouse line exhibits a hypertensive phenotype and a prolonged response to vasoconstrictors. Objective To compare RGS2 expression in peripheral blood mononuclear cells (PBMs) and cultured fibroblasts from normotensive subjects and hypertensive patients. Methods PBMs were isolated from 100 controls and 150 essential hypertensives. Additionally, fibroblasts were isolated from skin biopsy of 11 normotensives and 12 hypertensives and cultured up to the third passage. Quantitative mRNA and protein RGS2 expression were performed by real-time quantitative reverse transcriptase-polymerase chain reaction and by immunoblotting, respectively. Free Ca2+ measurement was performed in monolayers of 24-h serum-deprived cells, using FURA-2 AM. Phosphorylation of the extracellular signal-regulated kinases ERK1/2 was measured by immunoblotting. Polymorphism (C1114G) in the 3′ untranslated region of the RGS2 gene was investigated by direct sequencing and real-time polymerase chain reaction (PCR). Results RGS2 mRNA expression was significantly lower in PBM and in fibroblasts from hypertensives, in comparison to normotensives. C1114G polymorphism was associated with RGS2 expression, with the lowest values in GG hypertensives. The 1114G allele frequency was increased in hypertensives compared with normotensives. Angiotensin II-stimulated intracellular Ca2+ increase and ERK1/2 phosphorylation were higher in fibroblasts from hypertensive patients compared with control subjects, and in those with the G allele, independently of the blood pressure status. The angiotensin II-stimulated Ca2+ mobilization and ERK1/2 phosphorylation were negatively correlated with RGS2 mRNA expression. Conclusion Low expression of RGS2 contributes to increased G-protein-coupled signaling in hypertensive patients. The allele G is associated with low RGS2 expression and blood pressure increase in humans.


Science | 2007

A Molecular Basis for Natural Selection at the timeless Locus in Drosophila melanogaster

Federica Sandrelli; Eran Tauber; Mirko Pegoraro; Gabriella Mazzotta; Paola Cisotto; Johannes Landskron; Ralf Stanewsky; Alberto Piccin; Ezio Rosato; Mauro Agostino Zordan; Rodolfo Costa; Charalambos P. Kyriacou

Diapause is a protective response to unfavorable environments that results in a suspension of insect development and is most often associated with the onset of winter. The ls-tim mutation in the Drosophila melanogaster clock gene timeless has spread in Europe over the past 10,000 years, possibly because it enhances diapause. We show that the mutant allele attenuates the photosensitivity of the circadian clock and causes decreased dimerization of the mutant TIMELESS protein isoform to CRYPTOCHROME, the circadian photoreceptor. This interaction results in a more stable TIMELESS product. These findings reveal a molecular link between diapause and circadian photoreception.


Current Biology | 2003

Temporal Mating Isolation Driven by a Behavioral Gene in Drosophila

Eran Tauber; Helen Roe; Rodolfo Costa; J.Michael Hennessy; Charalambos P. Kyriacou

Speciation is the evolutionary process in which new barriers to gene exchange are created. These barriers may be physical, leading to spatial separation of subpopulations and resulting in allopatric speciation, or they may be temporal, giving rise to allochronic speciation, and may include the time of day or the time of year when mating takes place. Drosophila melanogaster and D. pseudoobscura show different temporal patterns of circadian locomotor activity that are determined by the circadian clock gene period (per). Genes that control aspects of behavior that might be relevant to courtship and mating, such as locomotor patterns, become obvious candidates for involvement in the speciation process. However, evidence for the role of individual genes in the mechanism of mate choice has proved elusive. We have used transgenic flies carrying the natural per genes from these two Drosophila species to reveal that per has the potential to provide the permissive conditions for speciation, by affecting mate choice through a mechanism involving the species-specific timing of mating behavior.


Nature Genetics | 2011

Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies.

Daniele Ghezzi; Paola Arzuffi; Mauro Agostino Zordan; Caterina Da Re; Costanza Lamperti; Clara Benna; Pio D'Adamo; Daria Diodato; Rodolfo Costa; Caterina Mariotti; Graziella Uziel; Cristina Smiderle; Massimo Zeviani

Although mutations in CYTB (cytochrome b) or BCS1L have been reported in isolated defects of mitochondrial respiratory chain complex III (cIII), most cIII-defective individuals remain genetically undefined. We identified a homozygous nonsense mutation in the gene encoding tetratricopeptide 19 (TTC19) in individuals from two families affected by progressive encephalopathy associated with profound cIII deficiency and accumulation of cIII-specific assembly intermediates. We later found a second homozygous nonsense mutation in a fourth affected individual. We demonstrated that TTC19 is embedded in the inner mitochondrial membrane as part of two high–molecular‐weight complexes, one of which coincides with cIII. We then showed a physical interaction between TTC19 and cIII by coimmunoprecipitation. We also investigated a Drosophila melanogaster knockout model for TTC19 that showed low fertility, adult-onset locomotor impairment and bang sensitivity, associated with cIII deficiency. TTC19 is a putative cIII assembly factor whose disruption is associated with severe neurological abnormalities in humans and flies.


Trends in Genetics | 2008

Clines in clock genes: fine-tuning circadian rhythms to the environment

Charalambos P. Kyriacou; Alexandre A. Peixoto; Federica Sandrelli; Rodolfo Costa; Eran Tauber

The dissection of the circadian clock into its molecular components represents the most striking and well-studied example of a gene regulatory network underlying a complex behavioural trait. By contrast, the evolutionary analysis of the clock has developed more slowly. Here we review studies that have surveyed intraspecific clock gene variation over large geographical areas and have discovered latitudinal clines in gene frequencies. Such spatial patterns traditionally suggest that natural selection shapes genetic variation, but it is equally possible that population history, or a mixture of demography and selection, could contribute to the clines. We discuss how population genetics, together with functional assays, can illuminate these possible cases of natural selection in Drosophila clock genes.


Cell Metabolism | 2009

Expression of the Ciona intestinalis Alternative Oxidase (AOX) in Drosophila Complements Defects in Mitochondrial Oxidative Phosphorylation

Daniel J.M. Fernández-Ayala; Alberto Sanz; Suvi Vartiainen; Kia K. Kemppainen; Marek Babusiak; Eero Mustalahti; Rodolfo Costa; Tea Tuomela; Massimo Zeviani; Jongkyeong Chung; Kevin M.C. O'Dell; Pierre Rustin; Howard T. Jacobs

Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders. The single-subunit alternative oxidase (AOX) found in many eukaryotes, but not in arthropods or vertebrates, offers a potential bypass of the OXPHOS cytochrome chain under conditions of pathological OXPHOS inhibition. We have engineered Ciona intestinalis AOX for conditional expression in Drosophila melanogaster. Ubiquitous AOX expression produced no detrimental phenotype in wild-type flies. However, mitochondrial suspensions from AOX-expressing flies exhibited a significant cyanide-resistant substrate oxidation, and the flies were partially resistant to both cyanide and antimycin. AOX expression was able to complement the semilethality of partial knockdown of both cyclope (COXVIc) and the complex IV assembly factor Surf1. It also rescued the locomotor defect and excess mitochondrial ROS production of flies mutated in dj-1beta, a Drosophila homolog of the human Parkinsons disease gene DJ1. AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders.

Collaboration


Dive into the Rodolfo Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ezio Rosato

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Zeviani

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge