Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodolphe Poupardin is active.

Publication


Featured researches published by Rodolphe Poupardin.


Insect Biochemistry and Molecular Biology | 2008

Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides.

Rodolphe Poupardin; Stéphane Reynaud; Clare Strode; Hilary Ranson; John Vontas; Jean-Philippe David

The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.


BMC Genomics | 2009

Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

Sébastien Marcombe; Rodolphe Poupardin; Frédéric Darriet; Stéphane Reynaud; Julien Bonnet; Clare Strode; Cécile Brengues; André Yébakima; Hilary Ranson; Vincent Corbel; Jean-Philippe David

BackgroundThe yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood.ResultsThe present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel knock down resistance (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR.ConclusionThese results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide.


PLOS Genetics | 2014

CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

Constant V. Edi; Luc Djogbenou; Adam M. Jenkins; Kimberly Regna; Marc A. T. Muskavitch; Rodolphe Poupardin; Christopher M. Jones; John Essandoh; Guillaume Ketoh; Mark J. I. Paine; Benjamin G. Koudou; Martin J. Donnelly; Hilary Ranson; David Weetman

Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte dIvoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with heightened CYP6 P450 expression, which also provides resistance across contrasting insecticides. Mosquito populations displaying such a diverse basis of extreme and cross-resistance are likely to be unresponsive to standard insecticide resistance management practices.


PLOS ONE | 2012

Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors

Sébastien Marcombe; Romain Blanc Mathieu; Nicolas Pocquet; Muhammad-Asam Riaz; Rodolphe Poupardin; Serge Sélior; Frédéric Darriet; Stéphane Reynaud; André Yébakima; Vincent Corbel; Jean-Philippe David; Fabrice Chandre

Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the “knock-down resistance” V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.


PLOS Neglected Tropical Diseases | 2012

Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti

Vassiliki Bariami; Christopher M. Jones; Rodolphe Poupardin; John Vontas; Hilary Ranson

Background Pyrethroid insecticides are widely utilized in dengue control. However, the major vector, Aedes aegypti, is becoming increasingly resistant to these insecticides and this is impacting on the efficacy of control measures. The near complete transcriptome of two pyrethroid resistant populations from the Caribbean was examined to explore the molecular basis of this resistance. Principal Findings Two previously described target site mutations, 1016I and 1534C were detected in pyrethroid resistant populations from Grand Cayman and Cuba. In addition between two and five per cent of the Ae. aegypti transcriptome was differentially expressed in the resistant populations compared to a laboratory susceptible population. Approximately 20 per cent of the genes over-expressed in resistant mosquitoes were up-regulated in both Caribbean populations (107 genes). Genes with putative monooxygenase activity were significantly over represented in the up-regulated subset, including five CYP9 P450 genes. Quantitative PCR was used to confirm the higher transcript levels of multiple cytochrome P450 genes from the CYP9J family and an ATP binding cassette transporter. Over expression of two genes, CYP9J26 and ABCB4, is due, at least in part, to gene amplification. Significance These results, and those from other studies, strongly suggest that increases in the amount of the CYP9J cytochrome P450s are an important mechanism of pyrethroid resistance in Ae. aegypti. The genetic redundancy resulting from the expansion of this gene family makes it unlikely that a single gene or mutation responsible for pyrethroid resistance will be identified in this mosquito species. However, the results from this study do pave the way for the development of new pyrethroid synergists and improved resistance diagnostics. The role of copy number polymorphisms in detoxification and transporter genes in providing protection against insecticide exposure requires further investigation.


BMC Genomics | 2010

Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology.

Jean-Philippe David; Eric Coissac; Christelle Melodelima; Rodolphe Poupardin; Muhammad Asam Riaz; Alexia Chandor-Proust; Stéphane Reynaud

BackgroundThe control of mosquitoes transmitting infectious diseases relies mainly on the use of chemical insecticides. However, mosquito control programs are now threatened by the emergence of insecticide resistance. Hitherto, most research efforts have been focused on elucidating the molecular basis of inherited resistance. Less attention has been paid to the short-term response of mosquitoes to insecticides and pollutants which could have a significant impact on insecticide efficacy. Here, a combination of LongSAGE and Solexa sequencing was used to perform a deep transcriptome analysis of larvae of the dengue vector Aedes aegypti exposed for 48 h to sub-lethal doses of three chemical insecticides and three anthropogenic pollutants.ResultsThirty millions 20 bp cDNA tags were sequenced, mapped to the mosquito genome and clustered, representing 6850 known genes and 4868 additional clusters not located within predicted genes. Mosquitoes exposed to insecticides or anthropogenic pollutants showed considerable modifications of their transcriptome. Genes encoding cuticular proteins, transporters, and enzymes involved in the mitochondrial respiratory chain and detoxification processes were particularly affected. Genes and molecular mechanisms potentially involved in xenobiotic response and insecticide tolerance were identified.ConclusionsThe method used in the present study appears as a powerful approach for investigating fine transcriptome variations in genome-sequenced organisms and can provide useful informations for the detection of novel transcripts. At the biological level, despite low concentrations and no apparent phenotypic effects, the significant impact of these xenobiotics on mosquito transcriptomes raise important questions about the hidden impact of anthropogenic pollutants on ecosystems and consequences on vector control.


Aquatic Toxicology | 2009

Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics☆

Muhammad Asam Riaz; Rodolphe Poupardin; Stéphane Reynaud; Clare Strode; Hilary Ranson; Jean-Philippe David

The effect of exposure of Aedes aegypti larvae for 72h to sub-lethal concentrations of the herbicide glyphosate and the polycyclic aromatic hydrocarbon benzo[a]pyrene on their subsequent tolerance to the chemical insecticides imidacloprid, permethrin and propoxur, detoxification enzyme activities and transcription of detoxification genes was investigated. Bioassays revealed a significant increase in larval tolerance to imidacloprid and permethrin following exposure to benzo[a]pyrene and glyphosate. Larval tolerance to propoxur increased moderately after exposure to benzo[a]pyrene while a minor increased tolerance was observed after exposure to glyphosate. Cytochrome P450 monooxygenases activities were strongly induced in larvae exposed to benzo[a]pyrene and moderately induced in larvae exposed to imidacloprid and glyphosate. Larval glutathione S-transferases activities were strongly induced after exposure to propoxur and moderately induced after exposure to benzo[a]pyrene and glyphosate. Larval esterase activities were considerably induced after exposure to propoxur but only slightly induced by other xenobiotics. Microarray screening of 290 detoxification genes following exposure to each xenobiotic with the DNA microarray Aedes Detox Chip identified multiple detoxification and red/ox genes induced by xenobiotics and insecticides. Further transcription studies using real-time quantitative RT-PCR confirmed the induction of multiple P450 genes, 1 carboxy/cholinelesterase gene and 2 red/ox genes by insecticides and xenobiotics. Overall, this study reveals the potential of benzo[a]pyrene and glyphosate to affect the tolerance of mosquito larvae to chemical insecticides, possibly through the cross-induction of particular genes encoding detoxification enzymes.


Malaria Journal | 2014

Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania.

Theresia Estomih Nkya; Idir Akhouayri; Rodolphe Poupardin; Bernard Batengana; Franklin W. Mosha; Stephen Magesa; William Kisinza; Jean-Philippe David

BackgroundResistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments.MethodsNine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance.ResultsElevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact of agriculture on resistance mechanisms with multiple genes encoding pesticide targets, detoxification enzymes and proteins linked to neurotransmitter activity affected. In contrast, resistance mechanisms found in the urban area appeared more specific and more related to the use of insecticides for vector control.ConclusionsOverall, this study confirmed the role of the environment in shaping insecticide resistance in mosquitoes with a major impact of agriculture activities. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies.


Insect Molecular Biology | 2010

Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti

Rodolphe Poupardin; Muhammad Asam Riaz; John Vontas; Jean-Philippe David; Stéphane Reynaud

Transcription profiles of 11 Aedes aegypti P450 genes from CYP6 and CYP9 subfamilies potentially involved in xenobiotic metabolism were investigated. Many genes were preferentially transcribed in tissues classically involved in xenobiotic metabolism including midgut and Malpighian tubules. Life‐stage transcription profiling revealed important variations amongst larvae, pupae, and adult males and females. Exposure of mosquito larvae to sub‐lethal doses of three xenobiotics induced the transcription of several genes with an induction peak after 48 to 72u2003h exposure. Several CYP genes were also induced by oxidative stress and one gene strongly responded to 20‐hydroxyecdysone. Overall, this study revealed that these P450s show different transcription profiles according to xenobiotic exposures, life stages or sex. Their putative chemoprotective functions are discussed.


PLOS Neglected Tropical Diseases | 2013

Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

Nelson Grisales; Rodolphe Poupardin; Santiago Alejandro Gallón Gómez; Idalyd Fonseca-González; Hilary Ranson; Audrey Lenhart

Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while minimizing further selection of resistant phenotypes.

Collaboration


Dive into the Rodolphe Poupardin's collaboration.

Top Co-Authors

Avatar

Jean-Philippe David

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Reynaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hilary Ranson

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Muhammad Asam Riaz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Vincent Corbel

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Clare Strode

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Jones

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge