Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodolphe Sepulchre is active.

Publication


Featured researches published by Rodolphe Sepulchre.


Archive | 1997

Constructive Nonlinear Control

Rodolphe Sepulchre; Mrdjan J. Jankovic; Petar V. Kokotovic

1 Introduction -- 1.1 Passivity, Optimality, and Stability -- 1.2 Feedback Passivation -- 1.3 Cascade Designs -- 1.4 Lyapunov Constructions -- 1.5 Recursive Designs -- 1.6 Book Style and Notation -- 2 Passivity Concepts as Design Tools -- 2.1 Dissipativity and Passivity -- 2.2 Interconnections of Passive Systems -- 2.3 Lyapunov Stability and Passivity -- 2.4 Feedback Passivity -- 2.5 Summary -- 2.6 Notes and References -- 3 Stability Margins and Optimality -- 3.1 Stability Margins for Linear Systems -- 3.2 Input Uncertainties -- 3.3 Optimality, Stability, and Passivity -- 3.4 Stability Margins of Optimal Systems -- 3.5 Inverse Optimal Design -- 3.6 Summary -- 3.7 Notes and References -- 4 Cascade Designs -- 4.1 Cascade Systems -- 4.2 Partial-State Feedback Designs -- 4.3 Feedback Passivation of Cascades -- 4.4 Designs for the TORA System -- 4.5 Output Peaking: an Obstacle to Global Stabilization -- 4.6 Summary -- 4.7 Notes and References -- 5 Construction of Lyapunov functions -- 5.1 Composite Lyapunov functions for cascade systems -- 5.2 Lyapunov Construction with a Cross-Term -- 5.3 Relaxed Constructions -- 5.4 Stabilization of Augmented Cascades -- 5.5 Lyapunov functions for adaptive control -- 5.6 Summary -- 5.7 Notes and references -- 6 Recursive designs -- 6.1 Backstepping -- 6.2 Forwarding -- 6.3 Interlaced Systems -- 6.4 Summary and Perspectives -- 6.5 Notes and References -- A Basic geometric concepts -- A.1 Relative Degree -- A.2 Normal Form -- A.3 The Zero Dynamics -- A.4 Right-Invertibility -- A.5 Geometric properties -- B Proofs of Theorems 3.18 and 4.35 -- B.1 Proof of Theorem 3.18 -- B.2 Proof of Theorem 4.35.


Proceedings of the IEEE | 2007

Collective Motion, Sensor Networks, and Ocean Sampling

Naomi Ehrich Leonard; Derek A. Paley; Francois Lekien; Rodolphe Sepulchre; David M. Fratantoni; Russ E. Davis

This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored


Automatica | 2009

Brief paper: Synchronization in networks of identical linear systems

Luca Scardovi; Rodolphe Sepulchre

The paper investigates the synchronization of a network of identical linear state-space models under a possibly time-varying and directed interconnection structure. The main result is the construction of a dynamic output feedback coupling that achieves synchronization if the decoupled systems have no exponentially unstable mode and if the communication graph is uniformly connected. The result can be interpreted as a generalization of classical consensus algorithms. Stronger conditions are shown to be sufficient-but to some extent, also necessary-to ensure synchronization with the diffusive static output coupling often considered in the literature.


Automatica | 2011

Brief paper: An internal model principle is necessary and sufficient for linear output synchronization

Peter Wieland; Rodolphe Sepulchre; Frank Allgöwer

Output synchronization of a network of heterogeneous linear state-space models under time-varying and directed interconnection structures is investigated. It is shown that, assuming stabilizability and detectability of the individual systems and imposing very mild connectedness assumptions on the interconnection structure, an internal model requirement is necessary and sufficient for synchronizability of the network to polynomially bounded trajectories. The resulting dynamic feedback couplings can be interpreted as a generalization of existing methods for identical linear systems.


IEEE Transactions on Automatic Control | 2007

Stabilization of Planar Collective Motion: All-to-All Communication

Rodolphe Sepulchre; Derek A. Paley; Naomi Ehrich Leonard

This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higher-level tasks at the group level


IEEE Transactions on Automatic Control | 2008

Stabilization of Planar Collective Motion With Limited Communication

Rodolphe Sepulchre; Derek A. Paley; Naomi Ehrich Leonard

This paper proposes a design methodology to stabilize relative equilibria in a model of identical, steered particles moving in the plane at unit speed. Relative equilibria either correspond to parallel motion of all particles with fixed relative spacing or to circular motion of all particles around the same circle. Particles exchange relative information according to a communication graph that can be undirected or directed and time-invariant or time-varying. The emphasis of this paper is to show how previous results assuming all-to-all communication can be extended to a general communication framework.


Acta Applicandae Mathematicae | 2004

Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation

Pierre-Antoine Absil; Robert E. Mahony; Rodolphe Sepulchre

We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in Rn. In these formulas, p-planes are represented as the column space of n×p matrices. The Newton method on abstract Riemannian manifolds proposed by Smith is made explicit on the Grassmann manifold. Two applications – computing an invariant subspace of a matrix and the mean of subspaces – are worked out.


IEEE Transactions on Automatic Control | 1996

Constructive Lyapunov stabilization of nonlinear cascade systems

Mrdjan J. Jankovic; Rodolphe Sepulchre; Petar V. Kokotovic

We present a global stabilization procedure for nonlinear cascade and feedforward systems which extends the existing stabilization results. Our main tool is the construction of a Lyapunov function for a class of (globally stable) uncontrolled cascade systems. This construction serves as a basis for a recursive controller design for cascade and feedforward systems. We give conditions for continuous differentiability of the Lyapunov function and the resulting control law and propose methods for their exact and approximate computation.


IEEE Transactions on Automatic Control | 2007

Analysis of Interconnected Oscillators by Dissipativity Theory

Guy-Bart Stan; Rodolphe Sepulchre

This paper employs dissipativity theory for the global analysis of limit cycles in particular dynamical systems of possibly high dimension. Oscillators are regarded as open systems that satisfy a particular dissipation inequality. It is shown that this characterization has implications for the global stability analysis of limit cycle oscillations: i) in isolated oscillators, ii) in interconnections of oscillators, and iii) for the global synchrony analysis in interconnections of identical oscillators


Automatica | 2009

Brief paper: Autonomous rigid body attitude synchronization

Alain Sarlette; Rodolphe Sepulchre; Naomi Ehrich Leonard

This paper studies some extensions to the decentralized attitude synchronization of identical rigid bodies. Considering fully actuated Euler equations, the communication links between the rigid bodies are limited and the available information is restricted to relative orientations and angular velocities. In particular, no leader nor external reference dictates the swarms behavior. The control laws are derived using two classical approaches of nonlinear control - tracking and energy shaping. This leads to a comparison of two corresponding methods which are currently considered for distributed synchronization - consensus and stabilization of mechanical systems with symmetries.

Collaboration


Dive into the Rodolphe Sepulchre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessio Franci

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Pierre-Antoine Absil

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fulvio Forni

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge