Rodolpho Vilhena de Moraes
Sao Paulo State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodolpho Vilhena de Moraes.
Mathematical Problems in Engineering | 2013
Vivian Martins Gomes; Jorge Kennety S. Formiga; Rodolpho Vilhena de Moraes
The present paper has the goal of studying close approaches between a planet and a group of particles. The mathematical model includes the presence of the atmosphere of the planet. This cloud is assumed to be created by the passage of the spacecraft in the atmosphere of the planet, which can cause the explosion of the spacecraft. The system is assumed to be formed by the Sun, the planet, and the spacecraft that explodes and becomes a cloud of particles. The Sun and the planet are assumed to be in circular orbits and the motion is planar. The equations of motion are the ones given by the circular planar restricted three-body problem combined with the forces given by the atmospheric drag. In the numerical simulations, the planet Jupiter is the celestial body used for the close approaches. The initial positions and velocities of the spacecraft and the particles are specified at the periapsis, because it is assumed that this is the point where the explosion occurs.
Mathematical Problems in Engineering | 2011
Jean Paulo dos Santos Carvalho; Rodolpho Vilhena de Moraes; Antonio F. B. A. Prado
Low-altitude, near-polar orbits are very desirable as science orbits for missions to planetary satellites, such as the Earths Moon. In this paper, we present an analytical theory with numerical simulations to study the orbital motion of lunar low-altitude artificial satellite. We consider the problem of an artificial satellite perturbed by the nonuniform distribution of the mass of the Moon (𝐽2–𝐽5, 𝐽7, and 𝐶22). The conditions to get frozen orbits are presented. Using an approach that considers the single-averaged problem, we found families of periodic orbits for the problem of an orbiter travelling around the Moon, where frozen orbits valid for long periods of time are found. A comparison between the models for the zonal and tesseral harmonics coefficients is presented.
Mathematical Problems in Engineering | 2012
Jarbas Cordeiro Sampaio; Rodolpho Vilhena de Moraes; Sandro da Silva Fernandes
The orbital dynamics of synchronous satellites is studied. The 2 : 1 resonance is considered; in other words, the satellite completes two revolutions while the Earth completes one. In the development of the geopotential, the zonal harmonics 𝐽20 and 𝐽40 and the tesseral harmonics 𝐽22 and 𝐽42 are considered. The order of the dynamical system is reduced through successive Mathieu transformations, and the final system is solved by numerical integration. The Lyapunov exponents are used as tool to analyze the chaotic orbits.
Mathematical Problems in Engineering | 2009
Jean Paulo dos Santos Carvalho; Rodolpho Vilhena de Moraes; Antonio F. B. A. Prado
Herein, we consider the problem of a lunar artificial satellite perturbed by the nonuniform distribution of mass of the Moon taking into account the oblateness () and the equatorial ellipticity (sectorial term ). Using Lie-Hori method up to the second order short-period terms of the Hamiltonian are eliminated. A study is done for the critical inclination in first and second order of the disturbing potential. Coupling terms due to the nonuniform distribution of mass of the Moon are analyzed. Numerical simulations are presented with the disturbing potential of first and second order is. It an approach for the behavior of the longitude of the ascending node of a near Sun-synchronous polar lunar orbit is presented.
Mathematical Problems in Engineering | 2009
Paula Cristiane Pinto Mesquita Pardal; Helio Koiti Kuga; Rodolpho Vilhena de Moraes
Herein, the purpose is to present a Kalman filter based on the sigma point unscented transformation development, aiming at real-time satellite orbit determination using GPS measurements. First, a brief review of the extended Kalman filter will be done. After, the sigma point Kalman filter will be introduced as well as the basic idea of the unscented transformation, in which this filter is based. Following, the unscented Kalman filter applied to orbit determination will be explained. Such explanation encloses formulations about the orbit determination through GPS; the dynamic model; the observation model; the unmodeled acceleration estimation; also an application of this new filter approaches on orbit determination using GPS measurements discussion.
Mathematical Problems in Engineering | 2009
Luiz Danilo Damasceno Ferreira; Rodolpho Vilhena de Moraes
The effects of perturbations due to resonant geopotential harmonics on the semimajor axis of GPS satellites are analyzed. For some GPS satellites, secular perturbations of about 4 m/day can be obtained by numerical integration of the Lagrange planetary equations considering in the disturbing potential the main secular resonant coefficients. Amplitudes for long-period terms due to resonant coefficients are also exhibited for some hypothetical satellites orbiting in the neighborhood of the GPS satellites orbits. The results are important to perform orbital maneuvers of GPS satellites such that they stay in their nominal orbits. Also, for the GPS satellites that are not active, the long-period effects due to the resonance must be taken into account in the surveillance of the orbital evolutions of such debris.
Mathematical Problems in Engineering | 2013
Jean Paulo dos Santos Carvalho; Rodolpho Vilhena de Moraes; Antonio F. B. A. Prado
A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA) and Jupiter Icy Moon Explorer (JUICE, ESA). In this paper, we search for orbits around Europa with long lifetimes. Here, we develop the disturbing potential in closed form up to the second order to analyze the effects caused on the orbital elements of an artificial satellite around Europa. The equations of motion are developed in closed form to avoid expansions in power series of the eccentricity and inclination. We found polar orbits with long lifetimes. This type of orbits reduces considerably the maintenance cost of the orbit. We show a formula to calculate the critical inclination of orbits around Europa taking into account the disturbing potential due to the nonspherical shape of the central body and the perturbation of the third body.
Mathematical Problems in Engineering | 2009
Cristina Tobler de Sousa; Rodolpho Vilhena de Moraes; Helio Koiti Kuga
This work presents a (Data Reception Network) DRN software investigation considering simulated conditions inserting purposely errors into the Doppler measurements, satellites ephemeris, and time stamp, to characterize the geographical location software (GEOLOC) developed by Sousa (2000) and Sousa et al. (2003). The extension of reception stations in Brazilian territory can result in more precise locations if the network is considered in the GEOLOC. The results and analyses were first obtained considering the ground stations separately, to characterize their effects in the geographical location (GL) result. Six conditions were investigated: ideal simulated conditions, random and bias errors in the Doppler measurements, errors in the satellite ephemeris, and errors in the time stamp in order to investigate the DRN importance to get more accurate locations; an analysis was performed considering the random errors of 1 Hz in the Doppler measurements. The results are quite satisfactory and also show good compatibility between the simulator and the GEOLOC using the DRN.
Mathematical Problems in Engineering | 2007
Rodolpho Vilhena de Moraes; Aurea Aparecida da Silva; Helio Koiti Kuga
A low-cost computer procedure to determine the orbit of an artificial satellite by using short arc data from an onboard GPS receiver is proposed. Pseudoranges are used as measurements to estimate the orbit via recursive least squares method. The algorithm applies orthogonal Givens rotations for solving recursive and sequential orbit determination problems. To assess the procedure, it was applied to the TOPEX/POSEIDON satellite for data batches of one orbital period (approximately two hours), and force modelling, due to the full JGM-2 gravity field model, was considered. When compared with the reference Precision Orbit Ephemeris (POE) of JPL/NASA, the results have indicated that precision better than 9 m is easily obtained, even when short batches of data are used.
Mathematical Problems in Engineering | 2014
Paula Cristiane Pinto Mesquita Pardal; Rodolpho Vilhena de Moraes; Helio Koiti Kuga
The concept of frozen orbit has been applied in space missions mainly for orbital tracking and control purposes. This type of orbit is important for orbit design because it is characterized by keeping the argument of perigee and eccentricity constant on average, so that, for a given latitude, the satellite always passes at the same altitude, benefiting the users through this regularity. Here, the system of nonlinear differential equations describing the motion is studied, and the effects of geopotential and atmospheric drag perturbations on frozen orbits are taken into account. Explicit analytical expressions for secular and long period perturbations terms are obtained for the eccentricity and the argument of perigee. The classical equations of Brouwer and Brouwer and Hori theories are used. Nonsingular variables approach is used, which allows obtaining more precise previsions for CBERS (China Brazil Earth Resources Satellite) satellites family and similar satellites (SPOT, Landsat, ERS, and IRS) orbital evolution.